Xreferat.ru » Рефераты по экономико-математическому моделировани » Информационные технологии в эконометрике

Информационные технологии в эконометрике

или ином эконометрическом смысле) нейронные сети не имеют преимуществ перед другими адаптивными эконометрическими системами. Однако они более просты для восприятия. Надо отметить, что в эконометрике используются и модели, промежуточные между нейронными сетями и "обычными" системами регрессионных уравнений (одновременных и с лагами). Они тоже используют блок-схемы, как, например, универсальный метод моделирования связей экономических факторов ЖОК (этот метод описан в работе [24]).

Заметное место в математико-компьютерном обеспечении принятия решений в контроллинге занимают методы теории нечеткости (по-английски - fuzzy theory, причем термин fuzzy переводят на русский язык по-разному: нечеткий, размытый, расплывчатый, туманный, пушистый и др.). Начало современной теории нечеткости положено работой Л.А. Заде 1965г., хотя истоки прослеживаются со времен Древней Греции (об истории теории нечеткости см., например, книгу [12]). Это направление прикладной математики в последней трети ХХ в. получило бурное развитие. К настоящему времени по теории нечеткости опубликованы тысячи книг и статей, издается несколько международных журналов (половина - в Китае и Японии), постоянно проводятся международные конференции, выполнено достаточно много как теоретических, так и прикладных научных работ, практические приложения дали ощутимый технико-экономический эффект.

Основоположник рассматриваемого научного направления Лотфи А. Заде рассматривал теорию нечетких множеств как аппарат анализа и моделирования гуманистических систем, т.е. систем, в которых участвует человек. Его подход опирается на предпосылку о том, что элементами мышления человека являются не числа, а элементы некоторых нечетких множеств или классов объектов, для которых переход от "принадлежности" к "непринадлежности" не скачкообразен, а непрерывен. В настоящее время методы теории нечеткости используются почти во всех прикладных областях, в том числе при управлении качеством продукции и технологическими процессами.

Нечеткая математика и логика - мощный элегантный инструмент современной науки, который на Западе и на Востоке (в Японии, Китае, Корее) можно встретить в программном обеспечении сотен видов изделий - от игрушек и бытовых видеокамер до систем управления предприятиями. В России он был достаточно хорошо известен с начала 1970-х годов. Однако первая монография российского автора по теории нечеткости [12] была опубликована лишь в 1980 г. В дальнейшем проводившиеся раз в год всесоюзные конференции собирали около 100 участников - по мировым меркам немного. В настоящее время интерес к теории нечеткости среди экономистов и менеджеров растет.

При изложении теории нечетких множеств обычно не подчеркивается связь с вероятностными моделями. Между тем еще в середине 1970-х годов установлено (цикл соответствующих теорем приведен, в частности, в монографии [12], но это отнюдь не первая публикация), что теория нечеткости в определенном смысле сводится к теории случайных множеств, хотя эта связь и имеет, возможно, лишь теоретическое значение. В США подобные работы появились лет на пять позже.

Профессионалу в области контроллинга полезны многочисленные интеллектуальные инструменты анализа данных, относящиеся к высоким статистическим технологиям и эконометрике.


Литература


1. Корнилов С.Г. Накопление ошибки первого рода при повторной проверке статистических гипотез. Регламент повторных проверок. // Заводская лаборатория. 1996. Т.62. Nо.5. С.45-51.

2. Камень Ю.Э., Камень Я.Э., Орлов А.И. Реальные и номинальные уровни значимости в задачах проверки статистических гипотез. // Заводская лаборатория. 1986. Т.52. No.12. С.55-57.

3. Налимов В.В. Применение математической статистики при анализе вещества. - М.: Физматгиз, 1960. - 430 с.

4. Орлов А.И. Распространенная ошибка при использовании критериев Колмогорова и омега-квадрат. // Заводская лаборатория. 1985. Т.51. No.1. С.60-62.

5. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. Изд.3-е. - М.: Наука, 1983. - 416 с.

6. Орлов А.И. О современных проблемах внедрения прикладной статистики и других статистических методов. // Заводская лаборатория. 1992. Т.58. No.1. С.67-74.

7. Орлов А.И. Некоторые вероятностные вопросы теории классификации. – В сб.: Прикладная статистика. Ученые записки по статистике, т.45. - М.: Наука, 1983. С.166-179.

8. Никитина Е.П., Фрейдлина В.Д., Ярхо А.В. Коллекция определений термина "статистика" / Межфакультетская лаборатория статистических методов. Вып.37. - М.: Изд-во Московского государственного университета им. М.В. Ломоносова, 1972. - 46 с.

9. Орлов А.И. Что дает прикладная статистика народному хозяйству? // Вестник статистики. - 1986. - No.8. - С.52-56.

10. Орлов А.И. Сертификация и статистические методы (обобщающая статья). // Заводская лаборатория. - 1997. - Т.63. - No.З. - С.55-62.

11. Контроллинг в бизнесе. Методологические и практические основы построения контроллинга в организациях / А.М. Карминский, Н.И. Оленев, А.Г. Примак, С.Г. Фалько. - М.: Финансы и статистика, 1998. - 256 с.

12. Орлов А.И. Задачи оптимизации и нечеткие переменные. - М.: Знание, 1980. - 64 с.

13. The teaching of statistics / Studies in mathematics education. Vol.7. - Paris, UNESCO, 1989. - 258 pp.

14. Ермаков С.М. Метод Монте-Карло и смежные вопросы. - М.: Наука, 1975. - 471 с.

15. Ермаков С.М., Михайлов Г.А. Статистическое моделирование. - М.: Наука, 1982. - 296 с.

16. Иванова И.М. Случайные числа и их применения. - М.: Финансы и статистика, 1984. - 111 с.

17. Ермаков С.М. О датчиках случайных чисел. // Заводская лаборатория. 1993. Т.59. No.7. С.48-50.

18. Неуймин Я.Г. Модели в науке и технике. История, теория, практика. - Л.: Наука, 1984. - 190 с.

19. Моисеев Н.Н. Математические задачи системного анализа. - М.: Наука, 1981. - 488 с.

20. Нейлор Т. Машинные имитационные эксперименты с моделями экономических систем. - М.: Мир, 1975. - 500 с.

21. Эфрон Б. Нетрадиционные методы многомерного статистического анализа. - М.: Финансы и статистика, 1988. - 263 с.

22. Орлов А.И. О реальных возможностях бутстрепа как статистического метода. // Заводская лаборатория. 1987. Т.53. No.10. С.82-85.

23. Бэстенс Д.Э., Берт В.М. ван дер, Вуд Д. Нейронные сети и финансовые рынки: принятие решений в торговых операциях. - М.: ТВП, 1998.

24. Орлов А.И., Жихарев В.Н., Кольцов В.Г. Новый эконометрический метод "ЖОК" оценки результатов взаимовлияний факторов в инженерном менеджменте // Проблемы технологии, управления и экономики / Под общей редакцией к. э. н. Панкова В.А. Ч.1. Краматорск: Донбасская государственная машиностроительная академия, 1999. С.87-89.