Xreferat.com » Рефераты по педагогике » Графические работы на уроках стереометрии в средней школе

Графические работы на уроках стереометрии в средней школе

|| b. По признаку параллельности прямых: с || m, тогда они задают некоторую плоскость β. По условию , значит, они тоже задают плоскость, которая совпадает с α. Следовательно, все прямые, параллельные b и пересекающие а лежат в плоскости, которая в свою очередь параллельна b (по признаку параллельности прямой и плоскости).

2.07. В тетраэдре ABCD точки K, F, N и M – середины ребер соответственно AD, BD, BC и AC (рис. 20). Заполните таблицу, выбрав (обведя в кружок) определенное вами расположение указанных прямой и плоскости: А – пересекаются, Б – параллельны, В – прямая лежит в плоскости, Г – невозможно определить:



Прямая и плоскость Взаимное расположение
1

BD и AMN

А Б В Г

2

MN и ABC

А Б В Г

3

KC и DMN

А Б В Г

4

MN и ABD

А Б В Г

5

KF и DMN

А Б В Г

6

FN и KMF

А Б В Г

7

CF и AND

А Б В Г

8

FN и DMK

А Б В Г


3.01. Сделайте чертеж: Плоскости α и β имеют общую прямую а, плоскости α и γ – общую прямую b, а плоскости β и γ – общую прямую с. Прямые а и b параллельны (рис. 21).

3.02. Сделайте чертеж: Плоскости α и β имеют общую прямую а, плоскости α и γ – общую прямую b, а плоскости β и γ параллельны (рис. 22).


3.03. Сделайте чертеж: Сторона ВС треугольника АВС лежит на плоскости α. Через вершину А и точку М – середину стороны АС – проведены соответственно плоскости β и γ, пересекающие плоскость ∆АВС по прямым АК и МТ (рис. 23).

3.04. В тетраэдре РАВС проведено сечение А1В1Р1, параллельное грани АВР. Определите взаимное расположение медиан РЕ и Р1Е1 треугольников соответственно АВР и А1В1Р1 (рис. 24).

Решение: Рассмотреть 3 случая взаимного расположения прямых в пространстве: параллельность, пересечение, скрещивание. Итог: РЕ || Р1Е1.


3.05. Постройте сечение треугольной пирамиды РАВС плоскостью, которая проходит через внутреннюю точку К основания АВС и параллельна грани РАВ (рис.25).

Решение: Плоскость сечения проходит через точку К, пересекает грани АРС, СРВ и АВС пирамиды и параллельна АРВ. Следовательно, прямые пересечения с гранями параллельны соответствующим ребрам грани АРВ. Построение следует начать с нижнего основания через известную точку К. Далее через полученные точки пересечения с ребрами АС и ВС провести параллельные прямые АР и ВР соответственно.


5.2. Уроки применения знаний, умений и навыков


1.05. Докажите, что середины ребер АР, СР, ВС и АВ тетраэдра РАВС лежат в одной плоскости. Определите вид фигуры, вершинами которой служат эти точки (модификация задачи, приведенной в пункте 4.2.3).

1.06. Треугольник АВС лежит в плоскости α. Через его вершины проведены параллельные прямые, не лежащие в плоскости α. На них отложены равные отрезки АА1, ВВ1 и СС1 по одну сторону от α. Докажите, что ∆АВС и А1В1С1 равны (рис. 26).

Решение: Используется: способ задания плоскости через параллельные прямые (попарное рассмотрение заданных параллельных прямых); определение параллелограмма (достаточно равенства и параллельности одной пары противолежащих сторон (по условию)); условие равенства треугольников по трем сторонам.

1.07. Прямая АВ пересекает плоскость α. Через концы отрезка АВ и его середину С проведены параллельные прямые, пересекающие плоскость α в точках А1, В1 и С1. Рассмотрите случаи: 1) отрезок АВ не пересекает плоскость α (рис. 27а); 2) отрезок АВ пересекает α (рис. 27б). В каждом случае найдите: а) длину отрезка СС1, если: АА1 = 7, ВВ1 = 5; б) длину отрезка АА1, если ВВ1 = 7, СС1= 11.


Решение: а) Точки А, В и С лежат на одной прямой (из пересечения параллельных прямых с прямой АВ и плоскостью α). В1С1 = С1А1 (по теореме Фалеса). СС1 – средняя линия трапеции АА1ВВ1.

б) Сделаем выносной рисунок пересечения АВ и А1В1 и проведем через точку В прямую, параллельную прямой А1В1 (рис. 27в).

A1L = 5 (т.к. BL || A1B1)

CL1 – средняя линия в ∆АLВ

1.08. Через вершины А, В, С и D параллелограмма ABCD, расположенного в одном полупространстве относительно плоскости α, точку О пересечения его диагоналей и центроид М треугольника BCD проведены параллельные прямые, которые пересекают данную плоскость α соответственно в точках А1, В1, С1, D1, О1, М1. Найдите ММ1, ОО1 и DD1, если АА1 = 17, СС1 = 5, ВВ1 = 15 (рис. 28).

Решение: В задаче используется выделение фигуры из состава чертежа, чертеж рассматривается с разных точек.

АСС1А1 – трапеция (параллельные прямые АА1 и ВВ1 задают плоскость). ОО1 – средняя линия трапеции: .

BDD1B1 – трапеция: .

ОСС1О1 – трапеция.

ОМ = ОС (свойство пересечения медиан треугольника), О1М1 = О1С1 (аналогично). Следовательно, .

1.09. Докажите, что отрезки, соединяющие середины противолежащих ребер тетраэдра, пересекаются в одной точке и делятся этой точкой пополам (рис. 29).

Решение: ML || DB, NK || DB (как средние линии треугольников ADB и CDB соответственно), ML = NK. NMLK – параллелограмм (параллельные прямые задают плоскость). Из свойства диагоналей треугольника следует, что отрезки, соединяющие середины противолежащих ребер тетраэдра пересекаются и точкой пересечения делятся пополам. Доказательства для ОР аналогично.


2.08. В правильном тетраэдре DABC, все ребра которого равны 6, точка К лежит на ребре BD так, что DК = 2; точка М лежит на ребре ВС так, что ВМ = 4; точка Р – середина ребра АВ. а) Докажите, что КМ параллельна плоскости ADC. б) Докажите, что РМ не параллельна плоскости ADC. в) Проведите через точку Р прямую, параллельную плоскости ADC и пересекающую ребро DB в точке L. Найдите длину LK. г) Постройте сечение тетраэдра плоскостью, проходящей через точки Р и К параллельно АС (рис.30).

Решение: а) По теореме Фалеса: DC ||КМ. По признаку параллельности прямой и плоскости: (АDC) ||КМ.

б) РМ не параллельна АС (СМАР), следовательно, они пересекаются, так как лежат в одной плоскости. Тогда, РМ не параллельна плоскости ADC.

в) По теореме Фалеса: DL = 3. Тогда, LK = 1.

г) (PKS) – искомое сечение, где PS – средняя линия треугольника АВС.

2.09. Основанием правильной четырехугольной пирамиды PABCD является параллелограмм ABCD. Постройте ее сечение плоскостью, проходящей через АВ и точку К, лежащую в грани: а) ВСР (рис. 31а); б) DCP (рис. 31б). Какая фигура получается в сечении?

В обоих случаях – равнобокая трапеция.


2.10. Даны три попарно скрещивающиеся прямые а, b и с. Всегда ли существует плоскость: а) параллельная каждой из этих прямых (рис. 32а); б) пересекающая каждую из них (рис. 32б)? Ответ обоснуйте и выполните соответствующий рисунок.

Решение: а) Плоскость, параллельная каждой из скрещивающихся прямых существует, если данные прямые лежат в параллельных плоскостях.

б) Плоскость, пересекающая каждую из скрещивающихся прямых, существует, если существует прямая, принадлежащая этой плоскости, которая пересекает каждую из данных прямых.


2.11. Дан куб ABCDA1B1C1D1. Пусть Р1, Р2, Р3, Р4, Р5, Р6, Р7, Р8 – середины ребер соответственно АВ, ВВ1, В1А1, А1А, CD, СС1, С1D1, DD1. Каково взаимное положение таких прямых и плоскостей, как: а) Р3Р4 и Р1Р2Р6 (рис. 33а); б) Р7Р8 и Р1Р2Р6 (рис. 33б); в) Р4Р7 и Р1Р2Р5 (рис. 33в); г) Р1Р6 и АВ1D (рис. 33г); д) АС и Р3Р4Р5 (рис. 33д); е) BD и Р3Р4Р5 (рис. 33е)?


Решение: а) Р3Р4 || (Р1Р2Р6) (признак параллельности прямой и плоскости);

б) Р7Р8 || (Р1Р2Р6) (признак параллельности прямой и плоскости);

в) Р4Р7 (Р1Р2Р5) (при параллельном проектировании Р4Р7 на вектор прямая пересечет плоскость Р1Р2Р5);

г) Р1Р6 || (АВ1D) (дополним плоскость АВ1D до плоскости АВ1С1D; при параллельном проектировании Р1Р6 на вектор прямая будет лежать в плоскости АВ1С1D, следовательно, в этой плоскости существует прямая, параллельная Р1Р6);

д) АС || (Р3Р4Р5) (дополним плоскость Р3Р4Р5 до Р3Р4Р6Р5; при параллельном проектировании АС на вектор прямая перейдет в диагональ параллелограмма Р3Р4Р6Р5, следовательно, в этой плоскости существует прямая, параллельная АС);

е) BD Р3Р4Р5 (при параллельном проектировании BD на вектор прямая пересечет плоскость Р3Р4Р5).


    1. Дан параллелепипед ABCDA1B1C1D1, P и Q – внутренние точки граней соответственно ABCD и A1B1C1D1. Постройте сечение параллелепипеда плоскостью, проходящей через точки P и Q и параллельной прямой СС1 (рис. 34).

Решение: Проведем прямые PР1 и QQ1, параллельные СС1. Они задают плоскость, параллельную СС1 и проходящую через точки P и Q.

2.13. Дан куб ABCDA1B1C1D1; точка Р – середина ребра АА1. Постройте сечение куба плоскостью, проходящей через точки Р и D1 параллельно диагонали АС грани ABCD куба (рис. 35). Найдите периметр сечения, если ребро куба равно 10.

Решение: АС1 || (РВ1D1) (в этом можно убедиться, применив свойство диагоналей в параллелограмме A1B1C1D1 и теорему Фалеса к треугольнику АА1С1). По теореме Пифагора: . По формуле Герона: .

2.14. Докажите, что через две скрещивающиеся прямые можно провести параллельные плоскости (рис. 36).

Решение: Пусть прямые а и b скрещиваются. Выберем на прямой а произвольно точку А и проведем прямую с, параллельную b (через точку, не лежащую на данной прямой можно провести единственную прямую, параллельную данной). Прямые а и с задают плоскость β. По признаку параллельности прямой и плоскости: b || β. Аналогично, проведем прямую d в плоскости α.

α || β (если две пересекающиеся прямые плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны).

3.06. Постройте сечение пятиугольной пирамиды PABCDE плоскостью α, которая проходит через внутреннюю точку М основания ABCDE параллельно грани РAB (рис. 37).

Решение: Так как прямые, по которым две параллельные плоскости пересечены третьей плоскостью, параллельны, а плоскость α параллельна грани РАВ, то: а) прямая пересечения плоскости α с плоскостью основания пирамиды должна быть параллельна АВ; б) прямая пересечения α с плоскостью грани РВС – параллельна АР; в) прямая пересечения α с плоскостью РАD – параллельна РА, поэтому проводим: 1) через точку М прямую KF || AB; 2) FH || PA; 3) KR || PB; 4) ML || AP. Пятиугольник HLRKF – искомое сечение. В доказательстве используется признак параллельности прямой и плоскости, признак параллельности плоскостей.

3.07. Точки А, В и С лежат в плоскости α и не лежат на одной прямой. Равные и параллельные отрезки АА1, ВВ1 и СС1 расположены по одну сторону от плоскости α. Докажите, что (А1В1С1) || (АВС) (рис. 38).

Решение: ВВ1С1С – параллелограмм (из параллельности и равенства ВВ1 и СС1), следовательно ВС || В1С1. АВ || А1В1 (аналогично). По теореме о параллельности плоскостей (по двум пересекающимся прямым): (А1В1С1) || (АВС).

3.08. Точка В не лежит в плоскости ΔAEC, точки М, К и Р – середины отрезков соответственно АВ, ВС и ВЕ (рис.39). а) Докажите, что плоскости МКР и АЕС параллельны. б) Найдите площадь ΔМКР, если площадь ΔAEC равна 48 см2.

Решение: а)Заметим, что ΔAEC и не лежащая в нем точка В образуют тетраэдр ВАСЕ. МК || АС (МК – средняя линия ΔAВC). КР || СЕ (КР – средняя линия ΔВCЕ). По теореме о параллельности плоскостей (через пересекающиеся прямые): (МКР)||(АСЕ).

б) По формуле Герона:

, как средние линии соответствующих треугольников. Подставим данные значения в формулу: . Отсюда .

3.09. Три отрезка А1А2, В1В2 и С1С2, не лежащие в одной плоскости, имеют общую середину. Докажите, что плоскости А1В1С1 и А2В2С2 параллельны (рис. 40).

Решение: Каждые две пересекающиеся прямые задают плоскость (через любые две пересекающиеся прямые можно провести плоскость, и притом только одну). Так как точка пересечения делит прямые пополам, то по теореме Фалеса: А1В1 || В2А2. Аналогично доказывается параллельность С1В1 и С2В2, А1В1 и А2В2. По теореме о параллельности плоскостей (через пересекающиеся прямые): (А1В1С1)||(А2В2С2).


3.10. Прямая DF пересекает параллельные плоскости α, β и γ соответственно в точках D, Е и F, при этом DF = 3, ЕF = 9 (рис. 41). Прямая EG пересекает плоскости α и γ соответственно в точках G и Н, при этом EG = 12. Найдите длину GН.

Решение: Прямые EF и ЕH задают плоскость EFH, которая пересекает плоскости α и γ по прямым GD и FH соответственно. ∆GED ~∆HEF (так как GD || FH, ). По свойству преобразования подобия: . Тогда .

3.11. Плоскости α и β пересекаются по прямой с (рис. 42). Через точки А и В, расположенные вне этих плоскостей, проводятся параллельно плоскости β и параллельные между собой прямые АС и BD (), а также – параллельно плоскости α и параллельные между собой прямые АЕ и BF (). Докажите: а) плоскости АСЕ и BDF параллельны; б) плоскости АСЕ и BDF пересекают плоскости α и β по параллельным прямым.


Решение: а) GА || DB, АЕ || FВ по условию. По теореме о параллельности плоскостей (через пересекающиеся прямые): (АСЕ) || (DBF).

б) BF и АЕ задают плоскость, параллельную плоскости α. По свойству параллельных плоскостей: EF || с. Аналогично CD || c. По признаку параллельности прямых: CD || EF.

5.3. Уроки проверки знаний, умений и навыков

Для проверки знаний, умений и навыков разработаны три задачи на выявление типов оперирования пространственными образами: изменение пространственного положения образа (I тип); преобразование структуры образа (II тип); изменение положения и структуры образа одновременно (III тип).

I вариант

1. Через вершины параллелограмма ABCD, лежащего в одной из двух параллельных плоскостей, проведены параллельные прямые, пересекающие вторую плоскость в точках А1, В1, С1 и D1. Докажите, что четырехугольник А1В1С1D1 тоже параллелограмм (рис. 43).


Решение: АА1 = DD1 = СС1 = ВВ1 (отрезки параллельных прямых, заключенные между параллельными плоскостями, равны). Попарно параллельные прямые задают параллелограммы (задание плоскости через параллельные прямые), следовательно D1А1 || DА || СВ || С1В1. По определению А1В1С1D1 параллелограмм.

2. Докажите, что через любую из скрещивающихся прямых можно провести плоскость, параллельную другой прямой (модификация задачи 2.14).

3. Даны две параллельные плоскости, точка вне этих плоскостей и окружность в одной из этих плоскостей (рис. 44). Через каждую точку Х окружности и данную точку проводится прямая, пересекающая вторую плоскость в некоторой точке Х1. Что представляет собой геометрическое место точек Х1?

Решение: Заметим, что при данном преобразовании расстояние между точками изменяется в одно и тоже число раз (рассмотрение двух пересекающихся прямых и обобщение на множество прямых, обладающих данным свойством). Данный факт и указанный способ преобразования дает основание считать, что геометрическим местом точек Х1 является окружность, гомотетичная данной, с коэффициентом гомотетии .

II вариант

1. Докажите, что если четыре прямые, проходящие через точку А, пересекает плоскость α в вершинах параллелограмма, то они пересекают любую плоскость, параллельную α и не проходящую через А, тоже в вершинах параллелограмма (рис. 45).

Решение: Используется метод, подобный задаче 1 I варианта. Указание: Две пересекающиеся прямые задают плоскость – параллелограмм, в котором они являются диагоналями.

2. Точки А, В, С и D не лежат в одной плоскости. Докажите, что прямая, проходящая через середины отрезков АВ и ВС, параллельна прямой, проходящей через середины отрезков AD и CD (пример 9).

3. Даны две параллельные плоскости, пересекающая их прямая и окружность в одной из плоскостей (рис. 46). Через каждую точку Х окружности проводится прямая, параллельная данной прямой и пересекающая вторую плоскость в некоторой точке Х1. Что представляет собой геометрическое место точек Х1?

Решение: Аналогично задаче 3 I варианта, но с применением подобия фигур.

Заключение


Дидактические материалы разрабатывались в соответствии с показателями, характеризующими пространственное мышление. По своему содержанию:

  • Обеспечивали выявление не только конечного результата выполнения задания, но и процесса его достижения; при этом были довольно краткими, не требовали для своего решения больших временных затрат;

  • Составлялись на различном графическом материале и предполагали в основном оперирование формой, величиной изображаемых объектов, их пространственным положением.

Использование этого материала позволяет наиболее адекватно характеризовать пространственное мышление по интересующим показателям и вместе с тем сделать эти задания учебными по содержанию. Задания включают все основные типы оперирования, описанные в работе, и составляют определенный ряд, восходящий от простых преобразований с опорой на восприятие ко все более сложным, осуществляемым в уме, что определяло и порядок их предъявления. При этом учитывался характер графической основы, степень ее обобщенности, условности.

Приведенные в курсовой работе материалы показывают, что графические работы в стереометрии играют большую роль в формировании пространственного (образного) мышления учащихся, как компонента сложного интеллектуального образования.

В работе раскрывается содержание, структура и функции пространственного мышления, формируемого на графической основе; описываются дидактические условия составления заданий на выявление наличных возможностей учащихся в создании геометрических образов, их коррекции и развитии в нужном направлении.

Считаю, что поставленные цели и задаче в работе достигнуты.


Библиографический список


  1. Бакин, Р. А. Методика формирования пространственного образа при помощи компьютерной анимации [Текст]: диплом / Р. А. Бакин. – Киров: 2005.

  2. Геометрия [Текст]: учеб. для 10 – 11 кл. сред. шк. / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев [и др.]. – 2-ое изд. – М.: Просвещение, 1993. – 207 с.: ил.

  3. Геометрия. 10 кл. [Текст]: учеб. для общеобразоват. Учреждений с углубл. И профильным изучением математики / Е. В. Потоскуев, Л. И. Звавич. – М.: Дрофа, 2003. – 224 с.: ил.

  4. Геометрия. 10 кл. [Текст]: задачник для общеобразоват. Учреждений с углубл. И профильным изучением математики / Е. В. Потоскуев, Л. И. Звавич. – М.: Дрофа, 2003. – 256 с.: ил.

  5. Зеленина, Н. А. Заключительный этап решения геометрических задач в основной школе [Текст]: диссертация на соискание ученой степени кандидата пед. наук / Н. А. Зеленина. – Киров: 2004. – 158 с.

  6. Повышение эффективности обучения математике в школе [Текст]: кн. Для учителя: из опыта работы / Г. Д, Глейзер. – М.: Просвещение, 1989. – 240 с.

  7. Погорелов, А. В. Геометрия [Текст]: учеб. для 7 – 11 кл. сред. шк. / А. В. Погорелов. – 2-ое изд. - М.: Просвещение, 1991. – 384 с.: ил.

  8. Фридман, Л. М. Наглядность и моделирование в обучения [Текст]: кн. для учителя / Л. М. Фридман. – М.: Знание, 1984. – 80 с.: ил.

  9. Якиманская, И.С. Психологические основы математического образования [Текст]: учебное пособие / И.С. Якиманская. – М.: Издательский центр «Академия», 2004. – 320 с.

1 Термин «представливание» был введен Б. М. Тепловым для описания сложной интеллектуальной деятельности по созданию образов и оперированию ими. В дальнейшем он стал широко использоваться для обозначения процесса преднамеренного, произвольного воспроизведения образа и мысленного оперирования им при решении графических задач.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: