Xreferat.ru » Рефераты по педагогике » Методика изучения объемов многогранников в курсе стереометрии

Методика изучения объемов многогранников в курсе стереометрии

их восприятия.

Чтобы некоторая материальная модель позволяла организовать усвоение того или иного понятия, она должна не только правильно его отражать, но и быть простой для восприятия учащимися.

Таким образом, чтобы достигнуть основной цели изучения многогранников – это развитие пространственных представлений и пространственного воображения учащихся – необходимо использовать на уроках геометрии наглядность и ТСО.


1.4.2. Развитие логического мышления

Данная цель реализуется через правильно подобранный задачный материал и разумное сочетание логики и интуиции учащихся. Заданный материал по теме «Объем многогранников» дает возможность применения различных методов. Одна и та же задача может быть решена по-разному. Целенаправленная работа учителя по решению «опорных» задач (задач, часто встречающихся и являющихся элементами других задач по теме «Объем многогранников»), по обучению умению применять различные методы при их решении, по отбору задач для демонстрации эффективности того или иного метода решения дает ощутимые результаты.

Материал учебника, различных пособий представляет учителю богатые возможности для дальнейшего развития логического мышления учащихся. Здесь вводятся много новых понятий, определений, доказываются теоремы, при этом возможно эффективное применение различных методов (координатный, векторный и др.). Решение задач на построение или задач, включающих построение как промежуточный элемент, требует логического обоснования, умелой записи. При работе над определением, теоремой нельзя ограничиваться воспроизведением текста учебника, нужно так организовать работу на уроке, чтобы учащиеся поняли необходимость каждого из свойств, фигурирующих в определении понятия, умели распознать понятие по его определению, умели выделять условие и заключение теоремы. Несомненную пользу принесет переформулировка изучаемых свойств объема и многогранников в терминах «если - то», «необходимо - достаточно», выявление условий применимости каждой из теорем.

Необходимо также помнить, что при изучении объемов многогранников, как и при изучении других разделов курса стереометрии, должно осуществляться разумное сочетание интуиции учащихся и логики. Педагогически нецелесообразно стремиться строго определять те понятия, о которых учащиеся имеют достаточно четкое и правильное представление из собственного жизненного опыта, а формулировки которых являются слишком громоздкими.


Выводы по § 1

Основные цели изучения темы «Объемы многогранников» в курсе стереометрии – развитие пространственных представлений учащихся, освоение способов вычисления практически важных величин и дальнейшее развитие логического мышления учащихся.

Анализ программы и учебников показал, что в настоящее время наиболее адаптированными учебниками для общеобразовательных школ являются [7] и [8].

На современном этапе обучения наиболее целесообразным является конструктивный способ введения понятия «Объем многогранников».

При подготовке к каждому уроку необходимо выбирать такие средства наглядности, которые позволяют легче организовать работу с учащимися по развитию пространственных представлений.

Для реализации основных целей изучения темы необходима тщательно продуманная система задач с практическим содержанием и задач на развитие логического мышления.

Глава 2. Методика изучения темы «Объемы многогранников»


§ 1 Пропедевтика изучения темы «Объемы многогранников»


Как по ранее действовавшей, так и по новой программе тема «Прямоугольный параллелепипед и его объем» изучается в 5 классе и увязывается с изучением законов арифметических действий. Изложение этого материала содержит максимально полное рассмотрение вопросов, связанных с первоначальными пространственными представлениями, прямоугольным параллелепипедом и понятием объема. Эксперимент, проведенный во многих школах, показал, что такое изложение темы требует 15-16 уроков, в то время, как новая программа отводит на этот материал (вместе с решением задач) несколько меньшее время. Учебник математики должен содержать полное объяснение, позволяющее учащемуся в случае необходимости (например, в случае пропуска двух-трех уроков по болезни) самостоятельно разобраться в материале по учебнику. Между тем изложение первоначального геометрического материала в наших учебниках для 5 класса традиционно является чрезмерно сжатым, практически не раскрывает все моменты элементарной геометрии. Поэтому при объяснении материала и при решении задач учитель вынужден сам давать дополнительные разъяснения.

Во-первых, учащиеся должны понимать, что такое прямоугольный параллелепипед. Речь идет вовсе не о том, чтобы они представляли себе прямоугольный параллелепипед как нечто похожее на коробку или брусок. У учащихся должны быть сформированы первоначальные пространственные представления: поверхность и каркас прямоугольного параллелепипеда, четверки параллельных ребер, измерения прямоугольного параллелепипеда, равенство противоположных граней, развертка и т. д.

Каким бы простым телом ни казался параллелепипед, учащимся требуется определенное время на знакомство с ним. Каждый ученик должен иметь на уроке и дома какую-нибудь модель параллелепипеда. При этом важно, чтобы учащиеся не просто рассматривали параллелепипед, но и задействовали при его изучении и другие виды восприятия. Так, они должны не только глазами, но и пальцами провести по его ребрам, «ощутить», что в каждой вершине сходятся три ребра. Взяв параллелепипед в руки так, чтобы в каждой его вершине оказалось по одному пальцу, они увидят и ощутят мышечно, что число задействованных пальцев равно 8, следовательно, у параллелепипеда 8 вершин. Аналогично можно сосчитать и число его граней. Такое использование при восприятии тела различных органов чувств помогает создать более полный его мыслительный образ [19].

Результатом подобного изучения параллелепипеда должно стать осознание целого ряда особенностей. Все грани прямоугольного параллелепипеда – прямоугольники, и всего их шесть; напротив друг друга расположены равные грани, таких пар равных граней три; в каждой вершине сходится три неравные грани. Аналогичные выводы можно сделать и о ребрах: всего их 12; есть равные ребра – три группы по четыре ребра; в каждой вершине сходится три ребра разной длины. Наконец, вершины: их 8, по четыре вершины в каждой из противолежащих граней. Такое всестороннее и внимательное изучение параллелепипеда, однако, не предполагает, что предлагаемые далее задания выполняются учащимися в умственном плане без опоры на модели и рисунки.

Особенностью рассмотрения параллелепипеда является комбинированный характер большинства рассматриваемых задач, который заключается не только в активной работе пространственного воображения, но и в привлечении изученных ранее понятий в новых ситуациях и сочетаниях: ломаная, составленная из ребер куба, периметр грани, площадь поверхности и др. Это создает определенные сложности для учащихся, поэтому выполнение таких упражнений требует дополнительных комментариев и разъяснений учителя.

Во-вторых, учащиеся должны получить первоначальное представление об объеме тела как о месте, занимаемом этим телом в пространстве. Эта задача нам представляется особенно важной. Учащиеся должны получить внутреннее убеждение о том, что объем – это объективное свойство окружающих предметов [1].

Начать изучение пункта «Объем параллелепипеда» полезно с напоминания о том, как измеряются длины и площади (выбор единицы измерения и др.) (Приложение 4)

Вывод правила вычисления объема параллелепипеда аналогичен выводу правила вычисления площади прямоугольника, поэтому сначала полезно повторить вывод последнего. Заметим, что очень важно сопроводить вывод правила нахождения объема параллелепипеда практическим выполнением учащимися описанных в учебнике действий. Полезно дать каждому учащемуся возможность повторить эти действия самостоятельно, проговаривая и поясняя их. Эти действия по заполнению пространства кубиками следует постепенно перевести в умственный план. Необходимость в них со временем отпадет и, сохраняя идею измерения пространства, учащиеся смогут сначала перейти к правилу вычисления объема параллелепипеда, а позднее и к формуле. Этим и определяется значительная доля заданий с кубиками, в которых требуется изобразить тело заданного объема, сложить (мысленно или практически) параллелепипед и определить его измерения, по изображению определить число кубиков, вошедших в коробку, и т. д. Кроме того, эти упражнения прекрасно развивают пространственное воображение: умение представить фигуру по ее описанию или изображению, выполнить с помощью нее заданные действия.

В-третьих, учащиеся должны усвоить формулу вычисления объема прямоугольного параллелепипеда. При этом они должны четко понимать, что, например, формула V = abc дает не определение объема прямоугольного параллелепипеда, а способ его вычисления. Нам представляется совершенно недопустимым ответ учащихся, который чаще всего приходится слышать: «Объем прямоугольного параллелепипеда – это произведение трех его измерений».

Если к этому добавить, что указанный материал должен быть увязан с законами арифметических действий, что необходимо научить пятиклассников решать задачи, связанные с нахождение объема прямоугольного параллелепипеда, что нужно рассмотреть вопрос о единицах измерения объемов и о переходе от одних единиц к другим и что, наконец, необходимо провести заключительную контрольную работу по теме, то станет ясно, что уложить все это в 16 часов можно лишь при напряженном режиме времени в классе. Тенденция к уменьшению числа часов, отводимых на данную тему, нам представляется не только методически не оправданной, но и вредной.

Учащиеся должны уметь приблизительно представлять кубические единицы измерения: 1 см3, 1 дм3, 1 м3, знать, что 1 дм3 = 1 л, представлять объемы некоторых сосудов, например, объем стакана равен 1/4л = 250 мл = 250 см3, объем ведра равен приблизительно 10 л, объем чайной ложки – 5 см3 или 5 мл., уметь осуществлять переход от одних единиц измерения в другие [19].

Перевод одних единиц в другие должен опираться на знание линейных метрических зависимостей. Полезно, если учащиеся составят табличку зависимостей между основными единицами объема, и будут пользоваться ею в дальнейшем при выполнении упражнений (Приложение 4).

Очень важный момент в теме «Объемы» – это переход от одних единиц измерения к другим. Затруднение детей в непонимании, а что же такое «куб. ед.» (ед3)? Отсюда большое количество ошибок при выполнении заданий типа: «Выразите в кубических сантиметрах 2 дм3 80 см3». Учащийся судорожно вспоминает, сколько кубических сантиметров в кубическом дециметре. Естественно, он часто ошибается и не имеет алгоритма для проверки своих знаний.

Особое место при изучении объема тел занимает обучение сравнению, в частности сравнению факта, выраженного словесно, с его интерпретацией на чертеже. Чертеж может служить опровержением какого-то общего высказывания. Учась опровергать неверные высказывания, школьники постепенно привыкают к доказательствам. А это необходимый вид деятельности при изучении геометрии.

Итак, разносторонняя работа с рисунком, чертежом не только способствует общему умственному развитию школьников, но развивает пространственное воображение, обеспечивая более полное и продуктивное изучение геометрии, и начинать эту работу необходимо в 5-6 классах при изучении математики.

Задание: 1) Имеются два сосуда вместимостью 3 л и 5 л. Как с помощью этих сосудов налить из водопроводного крана 4 л воды?

2) Какими могут быть размеры комнаты, объем которой равен 60 м3?

3) Изготовьте каркасную модель куба объемом 1дм3.

4) Куб с ребром 1 м разрезали на кубики с ребром 1 см и выстроили в один ряд. Какой длины получится ряд?

5) Вычислите объем вашей комнаты, где вы занимаетесь дома [5].

Отметим, что при изучении объемов тел необходимо уделять внимание и разверткам геометрических тел. Начать работу по изучению этого материала необходимо с практической деятельности: изготовления развертки и сворачивания ее в пространственное тело. Важно при этом обращать внимание учащихся на сам процесс сворачивания, на то, какие грани оказались противоположными, а какие – соседними, какие отрезки и точки совместились. Переход от практического решения к мысленному должен осуществляться постепенно, с учетом индивидуального развития учащихся.

Задание: 1) Куб сложен из 8 маленьких кубиков. Сколько прямоугольных параллелепипедов содержится в этом кубе?

2) Деревянный куб покрасили со всех сторон, потом распилили его на 27 одинаковых кубиков. Сколько среди них имеют одну, две, три окрашенные грани? Сколько кубиков не окрашено?

3) Из фигур выберите те, которые являются развертками куба? (рис. 3)

Методика изучения объемов многогранников в курсе стереометрииМетодика изучения объемов многогранников в курсе стереометрии


4) Какой длины получится полоса, если кубический километр разрезать на кубические метры и выложить их в одну линию?

5) В пустой прямоугольный бассейн, размеры которого 100 х 100 метров, налили 1 000 000 литров воды. Можно ли плавать в этом бассейне? [27]


§ 2 Методика изучения темы «Объем. Объемы призмы. Объемы прямоугольного параллелепипеда»


При планировании данной темы следует предварительно разбить ее на логически законченные части. Это поможет учителю правильно организовать повторение, проводить систематически учет и контроль знаний учащихся, своевременно и постепенно готовить средства наглядности, сгруппировать умения и навыки в соответствии с указаниями программы, заблаговременно подобрать соответствующие задачи и упорядочить их, подготовить тематику и содержание самостоятельных и контрольных работ, а также другие дидактические материалы (Приложение 2).

Тема «Объемы многогранников» изучается в 11 классе. На уроки геометрии в 11 классе отводится по два часа в неделю, всего 68 часов. Из них на объемы многогранников отводится 15-19 часов (в зависимости от учебника).

Подготовительной работой к началу изучения темы «Объемы многогранников» может служить повторение темы «Многоугольники», свойств и формул площадей многоугольников, многогранников, задач на построение сечений из курса 10 класса.

Уже в 7-9 классах учитель может включать в уроки задания типа:


Методика изучения объемов многогранников в курсе стереометрии


1) Чему равна площадь поверхности прямоугольного параллелепипеда, у которого длины ребер, исходящих из одной вершины, равны a, b, c?

Методика изучения объемов многогранников в курсе стереометрии2) Вычислите площадь диагонального сечения куба, ребро которого равно 4 см (рис. 4).

3) Сколько краски потребуется, чтобы окрасить

куб с ребром 2,5 см, если на покраску одного квадратного метра требуется 200 г краски?

4) Вычислите площадь полной поверхности правильной четырехугольной призмы, сторона основания которой равна 3 см, а высота 7 см.


Методика изучения объемов многогранников в курсе стереометрии

Методика изучения объемов многогранников в курсе стереометрии


5) На рис. 5 изображена развертка четырехугольной призмы. Выполните необходимые измерения и вычислите площадь полной поверхности призмы.

6) Вычислите площадь боковой поверхности правильной четырехугольной пирамиды, сторона основания которой равна 12 см, а боковое ребро 20 см (основанием правильной пирамиды является квадрат, а все боковые ребра имеют одинаковую длину).

7) Вычислите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 8,3 см, а боковое ребро – 12 см.

Основная цель уроков – ввести понятие объема тела, рассмотреть свойства объемов, теорему об объеме прямоугольного параллелепипеда и следствие об объеме прямой призмы, основанием которой является прямоугольный треугольник.

Для введения понятия объема учащимся понадобятся знания из курса планиметрии, которые необходимо повторить, а именно: понятие многоугольника, его площадь, свойства площадей, знание формул для нахождения площадей некоторых многоугольников, понятие многогранника, их виды, свойства.

Необходимо напомнить известные учащимся понятия призмы и прямоугольного параллелепипеда. Подчеркнуть, что каждая из этих поверхностей ограничивает некоторое геометрическое тело и отделяет его от остальной части пространства. Если следовать строго дедуктивному пути изложения школьного курса стереометрии по учебнику [7], надо определить такие понятия как «геометрическое тело», «ограниченность тела», «простое тело», которые лежат в основе определения объема многогранника. Однако на любом этапе обучения в средней школе следует руководствоваться принципом педагогической целесообразности при введении понятия. В данном случае, как понятие геометрического тела, так и понятие ограниченности тела, педагогически целесообразно считать интуитивно ясным для учащихся из их опыта и не давать им формально-логических определений, которые окажутся недоступными для всех учащихся. Этот материал могут прочитать самостоятельно наиболее подготовленные учащиеся, проявляющие повышенный интерес к математике.

Считаем, что полезно перед изучением определения «Объем» провести с учениками беседу по теме «Многогранники и его элементы».

Объясните, что такое:

а) многогранник;

б) поверхность многогранника.

Дан выпуклый многогранник. Что называют его гранью, ребром, вершиной?

Назовите известные вам многогранники. Выпуклым или невыпуклым является каждый из них? Сколько граней, ребер, вершин у каждого из них?

Два тетраэдра имеют общую грань и расположены по разные стороны от нее. Сколько вершин, ребер, граней имеет полученный многогранник?

Какие фигуры можно получить в сечении куба плоскостью, проходящей через:

а) одно из ребер;

б) одну из диагоналей;

в) одну из его вершин?

Приведите пример, показывающий, что объединение выпуклых фигур может не быть выпуклой фигурой.

Является ли пространственный крест (фигура из семи равных кубов) правильным многогранником? Сколько квадратов его ограничивает? Сколько у него вершин и ребер?

Обязательно ли является многогранник правильным, если все его ребра и многогранные углы равны? [17]

После введения понятия объемов многогранников необходимо решение задач на нахождение объемов, на свойства объемов многогранников. У учителя есть выбор: или он сам подбирает необходимые задачи, или он берет задачи из учебника.

Для формирования понятия объема тела авторами учебника [7] предлагается использовать следующие типы задач:

нахождение объемов тел с помощью формул;

нахождение элементов тел по их объему;

вычисление объемов многогранников, используя свойство аддитивности.

Используя модели многогранников (куб, тетраэдр, параллелепипед, призма и др.) необходимо назвать его элементы: вершины, грани, диагонали граней, диагонали рассматриваемых тел. Важно, чтобы школьники усвоили эти понятия, что позволит правильно понимать формулировку задач, не смешивая названия различных элементов в процессе их решения. Также эти знания понадобятся в дальнейшем при выводе формул для нахождения объемов тел.

В настоящее время в школьных программах по геометрии все чаще используют учебные пособия [7] и [8]. Доказательства теорем в данных учебниках представлены в приложениях 5 и 6, выделим положительные и отрицательные стороны изложения материала.

Доказательство теоремы в учебнике [7] разбито на два случая:

1) измерения a, b, c - конечные десятичные дроби,

2) хотя бы одно из измерений a, b, c - бесконечная десятичная дробь. При этом автор делает ссылку, что доказательство этой теоремы не является обязательным для изучения. В первом случае (a, b, c - бесконечная десятичная дробь), автор предлагает разбить каждое ребро параллелепипеда на равные части длины 1/10n, а затем через эти точки провести плоскости, перпендикулярные данному ребру. После находят объем каждого такого куба (с опорой на понятие объема), а затем по свойствам объема находят объем данного тела, то есть прямоугольного параллелепипеда.

Следствием теоремы являются обобщение полученной формулы для прямоугольного параллелепипеда и прямой призмы, в основании которой лежит прямоугольный треугольник, как произведения площади основания на высоту.

По учебнику [8] при выводе данной формулы вначале доказывают утверждение о том, что объемы двух прямоугольных параллелепипедов с равными основаниями относятся как их высоты. При доказательстве этого утверждения автор также предлагает разбить ребро одного из параллелепипедов на большое число n равных частей, а ребро другого параллелепипеда на m равных частей. Затем через точки деления проводит плоскости, параллельные основанию. Находит для каждого из них объемы, рассматривает промежутки, в которых они находятся. А так как число n можно брать сколь угодно большим, то следовательно доказывается условие данного утверждения. Затем автор берет куб, являющийся единицей измерения объема, и три прямоугольных параллелепипеда с измерениями: а,1,1; а,b,1; a,b,c. Обозначил их объемы и по доказанному утверждению вывел формулу.

Преимущество учебника [7] в том, что после каждого пункта идет список вопросов и задач, в то время, как в учебнике [8] практическая часть представлена небольшим количеством задач. Но основная тематика задач двух учебников похожа друг на друга. Далее порядок изучения тем расходится. В учебнике [8] предлагается рассмотреть объем наклонного параллелепипеда, причем доказательство сводится к добавлению и отсечению треугольной призмы. Тогда доказательство будет опираться на формулу прямоугольного параллелепипеда.

Используя следствие теоремы и свойства объемов, доказывается формула объема прямой призмы, также в два этапа. Сначала для прямой призмы, в основании которой лежит произвольный треугольник, а затем более общий случай – для произвольной призмы. При доказательстве авторский коллектив учебника [7] опирается на выведенную формулу объема прямой призмы, в основании которой прямоугольный треугольник. Поэтому на втором этапе учащиеся легко могут доказать формулу для произвольной прямой призмы, разбив основание на треугольники.

Автор учебника [8] при доказательстве теоремы об объеме призмы, дополняет сначала её до параллелепипеда; используется свойство симметрии для того, чтобы показать, что достроенная призма симметрична исходной, а следовательно их объемы равны. Учащиеся уже умеют находить объем параллелепипеда, а площадь основания (состоящая из двух треугольников) они умеют находить еще из планиметрии. Следовательно, они смогут найти объем призмы. Далее Погорелов рассматривает произвольную призму. Так же как и Атанасян, Погорелов разбивает основание призмы на треугольники. Затем находит объем каждой такой призмы, а уже затем по определению объемов находит объем данной призмы (как сумма объемов треугольных призм, её составляющих).


§ 3 Методика изучения темы «Объемы пирамиды»


На изучение темы «Объем пирамиды» целесообразно отвести три урока.

На первом уроке следует рассмотреть доказательство теоремы об объеме пирамиды. Основная цель данного урока – вывести формулу для нахождения объема пирамиды, показать применение теории к решению задач.

Для этого необходимо предложить ученикам задачи на нахождение площади поверхности пирамиды, вспомнить основные элементы, свойства. Предложить учащимся задачи на нахождение площади основания и т.д.

Используя текст учебника, необходимо подробно разобрать, как получается выражение для площади сечения пирамиды через площадь ее основания:

S(x)=Методика изучения объемов многогранников в курсе стереометрии.

Вычислить интеграл Методика изучения объемов многогранников в курсе стереометрии учащиеся могут самостоятельно.


Методика изучения объемов многогранников в курсе стереометрии


Второй урок можно посвятить повторению вопросов теории и решению задач. При подведении итогов урока можно использовать вопросы 4, 5 к главе VII учебника [7], а также задачи:

Методика изучения объемов многогранников в курсе стереометрииДокажите, что если боковые ребра пирамиды равны (или составляют равные углы с плоскостью основания), то вершина пирамиды проецируется в центр окружности, описанной около основания пирамиды (рис. 6). Какие многоугольники могут быть основанием таких пирамид?


Методика изучения объемов многогранников в курсе стереометрии

Методика изучения объемов многогранников в курсе стереометрииДокажите, что если двугранные углы при основании пирамиды равны (или равны высоты боковых граней, проведенных из вершины пирамиды), то вершина пирамиды проецируется в центр окружности, вписанной в основание пирамиды (рис. 7). Какие многоугольники могут быть основанием таких пирамид?

На третьем уроке выводится формула объема усеченной пирамиды как следствие теоремы об объеме пирамиды. В учебнике [7] предлагается вывести эту формулу самостоятельно.

В конце данного урока проводится самостоятельная работа по учебнику [7] контролирующего характера (на 6-8 мин):

Вариант I: задача № 686 (а) для l = 10 см, Методика изучения объемов многогранников в курсе стереометрии = 300.

Вариант II: задача № 688(а) для Н = 10 см, Методика изучения объемов многогранников в курсе стереометрии = 600.

Можно провести практическую работу (учитывается как контрольная). Учитель заранее подготавливает модели правильных пирамид (4-6) для работы в классе. Модели, покупные или изготовленные учащимися, перенумеровываются и раздаются по одной. Учащийся не получает ту модель, которую он сам изготовил. Учитель имеет готовые ответы. Измерения производятся в см или в мм.

Указания даются устно:

Вместо буквы n поставить цифры 4 или 6.

Выполнить все необходимые измерения, сделать чертеж, заполнить таблицу.

Выражение для вычисления площади основания Q записать.

Все вычисления записывать в таблицу.


Модель №………

Правильная n-угольная пирамида


Сторона основания…………………………

Периметр основания……………………….

Площадь основания………………………..

Апофема пирамиды………………………..

Площадь боковой поверхности……………

Площадь полной поверхности…………….

Высота пирамиды………………………….

Объем пирамиды…………………………..

а (см)

Р (см)

Q (см)

А (см)

Sбок (см2)

S (см2)

Н (см)

V (см3)


Дополнительное задание (подготавливается учителем на карточках и предлагается учащимся):

По развертке, данной в масштабе, вычислить действительные площадь полной поверхности и объем: 1) правильной призмы (рис. 8); 2) правильной пирамиды (рис. 9)


Методика изучения объемов многогранников в курсе стереометрииМетодика изучения объемов многогранников в курсе стереометрииМетодика изучения объемов многогранников в курсе стереометрии


Указание: при выполнении в тетради чертежей пирамиды и призмы учащийся может взять произвольные размеры основных элементов.

Вычислить объем башни, размеры которой в метрах даны на рисунке 10.

Вывод формулы объема пирамиды в учебнике [7] рассматривается в два этапа (Приложение 7). Вначале автор предлагает рассмотреть для треугольной пирамиды, а затем – для произвольной. Автор проводит ось, рассматривает сечение плоскостью, выражает площадь сечения через площадь основания, применяет основную формулу для вычисления объемов (определенный интеграл). В доказательстве автор также использует признаки подобия. Таким образом, хорошо прослеживается связь с ранее уже изученным.


Методика изучения объемов многогранников в курсе стереометрии


Следствием теоремы, в отличие от [8], является формула объема для усеченной пирамиды. Доказательства в данном учебнике не приведено. В учебнике [7] формулировка формулы приведена, как задача, причем автор сам задачу решает.

Мы рассмотрели основные рекомендации для изучения данной темы, которые описаны в соответствующей литературе. Но есть и другие приемы и методы, которыми практически не пользуются, но они имеют свои преимущества. Далее приведена примерная (авторская) система данных уроков.

Методика изучения объемов многогранников в курсе стереометрииИзучение темы «Объемы многогранников» предлагается вести по схеме, отличной от предлагаемой ранее в данной работе.

Дело в том, что объемы тел – тема, вызывающая достаточно большие трудности у учащихся. В этом разделе есть четыре трудных для усвоения теоремы: 1) об объеме прямоугольного параллелепипеда; 2) об объеме пирамиды; 3) об объеме цилиндра; 4) об объеме тела, полученного вращением криволинейной трапеции [21].

Выводы формул для вычисления объема каждого вида многогранника, цилиндра, конуса проводятся разными методами, что вызывает значительные трудности при их воспроизведении.

Предлагаемая мною система изучения этого раздела устраняет недостатки и создает условия для усвоения основной идеи измерения фигур в пространстве: объем фигуры может быть найден с помощью вычисления интеграла от определенным образом заданной функции.

С целью осуществления такого подхода к измерениям пространственных фигур предлагается посвятить несколько уроков обобщению изученного ранее материала об измерении отрезков и плоских фигур (о длинах и площадях) и ввести аналогичным образом измерение пространственных фигур. Рассмотрим их содержание более подробно.


Урок 1

Тема урока: обобщение свойства длин отрезков и площадей плоских фигур.

Цель урока: повторить свойства длин отрезков и площадей фигур, провести необходимые аналогии.

В начале урока необходимо повторить таблицу метрической системы мер длины, площади и