Xreferat.com » Рефераты по промышленности и производству » Расчет и проектирование привода лебедки

Расчет и проектирование привода лебедки

VALIGN=TOP> RАу, Н 1019 34,5 7104 RБх, Н 2224 60 2469 RБу, Н 2224 60 2469 Fr, Н 251 267 4938

Подшипники устанавливаем по схеме «враспор». Определяем долговечность подшипников ведомого вала, имеющего наибольшую радиальную нагрузку.

Определяем эквивалентную динамическую нагрузку


Fэ=(ХVЧFrА+YЧFаА) KdЧKτ; [1,c.212];


где Kd - коэффициент безопасности;

Kd =1,3…1,5 [1,c.214, табл.9.19];

принимаем Kd =1,3;

FаА=0;

Х=1 для шариковых подшипников;

V – коэффициент вращения, при вращении внутреннего кольца V=1

Kτ – температурный коэффициент;

Kτ =1 (до 100єС) [1,c.214, табл.9.20];

Fэ=1х1х4938х1,3х1=6,4кН<C=143кН

Определяем номинальную долговечность подшипников в часах

Расчет и проектирование привода лебедки [1,c.211];

Расчет и проектирование привода лебедки; Расчет и проектирование привода лебедкич.

Долговечность обеспечена.

6. Подбор и проверочный расчет шпонок


Выбор и проверочный расчет шпоночных соединений проводим по [3]. Обозначения используемых размеров приведены на рис.11.


Расчет и проектирование привода лебедки

Рис.11 Сечение вала по шпонке


6.1 Шпонки ведущего вала


Для выходного конца быстроходного вала при d=32 мм подбираем призматическую шпонку со скругленными торцами по ГОСТ23360-78 bxh=10x8 мм2 при t=5мм (рис.11).

При длине ступицы шкива lш=58 мм выбираем длину шпонки l=50мм.

Материал шпонки – сталь 40Х нормализованная. Напряжения смятия и условия прочности определяем по формуле:


Расчет и проектирование привода лебедки (7.1)


где Т – передаваемый момент, НЧмм; Т1=80700 НЧмм.

lр – рабочая длина шпонки, при скругленных концах lр=l-b,мм;

[s]см – допускаемое напряжение смятия.

С учетом того, что на выходном конце быстроходного вала устанавливается полумуфта из ст.3 ([s]см=110…190 Н/мм2) вычисляем:

Расчет и проектирование привода лебедки

Условие выполняется.

Для шестерен быстроходного вала при d=50 мм подбираем призматическую шпонку со скругленными торцами bxh=14x9 мм2 при t=5,5мм, t1=3,8мм (рис.10).

При длине ступицы шестерни lш=54 мм выбираем длину шпонки l=45мм.

Материал шпонки – сталь 45 нормализованная. Проверяем напряжение смятия, подставив значения в формулу (10.1):

Расчет и проектирование привода лебедки

Проверим толщину тела шестерни между впадиной зуба и пазом для шпонки (см. рис.12). Для изготовления шестерни отдельно от вала должно соблюдаться условие:

s≥2,5m, где m – модуль зубчатой передачи.


Расчет и проектирование привода лебедки

Рис.11 Схема для проверки возможности изготовления отдельной шестерни

s=[df – (dк + 2t1)]/2=[48 – (50+2х3,3)]/2=-8,6<0,

т.е. шестерню невозможно изготовить отдельно, необходимо изготовление вала-шестерни.


6.2 Шпонки промежуточного вала


Для зубчатых колес промежуточного вала при d=48 мм подбираем призматическую шпонку со скругленными торцами bxh=14x9 мм2 при t=5мм, t1=3,3мм (рис.10).

При длине ступицы шестерни lш=54 мм выбираем длину шпонки l=45мм. Т2=388Нм=388000Нмм. С учетом того, что на промежуточном валу устанавливаются шестерни из стали 45 ([s]см=170…190 Н/мм2) вычисляем по формуле (7.1):

Расчет и проектирование привода лебедки

Для шевронной шестерни вала при d=52 мм подбираем призматическую шпонку со скругленными торцами bxh=14x9 мм2 при t=5мм, t1=3,3мм (рис.11).

При длине ступицы шестерни lш=82 мм выбираем длину шпонки l=70мм.

Расчет и проектирование привода лебедкиМатериал шпонки – сталь 45 нормализованная. Проверяем напряжение смятия, подставив значения в формулу (10.1):


Условие выполняется.

Проверим толщину тела шестерни между впадиной зуба и пазом для шпонки (см. рис.12). Для изготовления шестерни отдельно от вала должно соблюдаться условие:

s≥2,5m, где m – модуль зубчатой передачи.

s=[df – (dк + 2t1)]/2=[80,5 – (52+2х5,5)]/2=11,5>10,

т.е. шестерню можно изготовить отдельно.


6.3 Подбор и проверочный расчет шпонок ведомого вала


Передаваемый момент Т=1964Нм=1964000Нмм.

Для выходного конца ведомого вала при d=80 мм подбираем призматическую шпонку со скругленными торцами bxh=22x14 мм2 при t=9мм.

При длине ступицы полумуфты lМ=105 мм выбираем длину шпонки l=100мм.

Расчет и проектирование привода лебедки

Для зубчатого колеса ведомого вала при d=82 мм подбираем призматическую шпонку со скругленными торцами bxh=25x14мм2 при t=9мм.

При длине ступицы шестерни lш=82 мм выбираем длину шпонки l=70мм.

Расчет и проектирование привода лебедкиС учетом того, что на ведомом валу устанавливаются шестерни из стали 45 ([s]см=170…190 Н/мм2) вычисляем по формуле (7.1):


условие выполняется.

Таблица 6. Параметры шпонок и шпоночных соединений

Параметр вх.вал- полум промвал-косозуб промвал-шеврон вых.вал-шеврон вых.вал-полум.
Ширина шпонки b,мм 10 14 16 22 25
Высота шпонки h,мм 8 9 10 14 14
Длина шпонки l,мм 50 45 70 70 100
Глубина паза на валу t,мм 5,5 5,5 6 9 9
Глубина паза во втулке t1,мм 3,3 3,8 4,3 5,4 5,4

7. Определение конструктивных размеров зубчатых передач


Так как зубчатые колеса имеют относительно небольшие диаметры, изготовление их планируем из круглого проката. Конструкцию колес принимаем стандартную, т.е. зубчатое колесо состоит из обода, диска и ступицы, а шестерня – из обода и ступицы. Определяем конструктивные размеры каждой из частей (см. рис.12).

Диаметр и ширина обода равны соответственно диаметру вершин зубьев и ширине зубчатого колеса.

Определяем толщину обода зубчатых колес:

S1=2,2m + 0,05b2=2,2х2 + 0,05х54=7,1мм.

S2=2,2m + 0,05b2=2,2х5 + 0,05х82=15,1мм.

Длины ступиц и внутренние диаметры определены ранее. Наружные диаметры ступиц определяем по формуле:

dст=1,55d;

dст1=1,55х48=62мм, dст2=1,55х52=81мм, dст3=1,55х95=147мм.


Расчет и проектирование привода лебедки

Рис.12 Конструктивные размеры зубчатых колес


Из ряда Rа40 линейных размеров (по ГОСТ6636-69) выбираем dст1=63мм, dст2=85мм, dст3=150мм.

Определяем толщину дисков С≥b /4.

С1=54/4=13,5мм. Принимаем С1=15мм,

С2=82/4=20,5мм. Принимаем С2=21мм,

Радиус R=2мм.

Размеры фасок обода и ступицы выбираем в зависимости от их диаметров 2,5…4мм

Принимаем α=45є, γ=0°

Все рассчитанные и выбранные значения сводим в табл.7.


Таблица 7. Конструктивные размеры зубчатых колес

Составная часть Наименование Колесо косозуб

Шестерня

шеврон

Колесо

шеврон

Обод Ширина, мм 54 - 82

Диаметр(da), мм 271 - 422,3

Толщина, мм 7 - 15

Фаска, ммх45° 2,5
4
Ступица Диаметр внутренний, мм 48 53 95

Диаметр наружный, мм 63
71

Длина, мм 42 85 150

Фаска, ммх45° 2 4 4
Диск Толщина, мм 15 - 21

8. Определение конструктивных размеров корпуса


Принимаем за основу разъемную конструкцию чугунного корпуса, приведенную на рис.13.


Расчет и проектирование привода лебедки

Рис.13 Конструкция корпуса редуктора


Используя ориентировочные соотношения, определяем основные размеры корпуса.

Толщина стенки основания корпуса:

Расчет и проектирование привода лебедкиРасчет и проектирование привода лебедки

где Т3 момент на тихоходном валу редуктора, Т3 =1964Нм;

Принимаем δкор=8мм.

Толщина стенки крышки корпуса δкр=0,9δкор=7мм.

Толщина ребра в основании δреб=δкор=8мм.

Толщина подъемного уха в основании δу=2,5δкр=18мм.

Диаметр подъемного уха dу=20мм.

Расчет и проектирование привода лебедкиДиаметр стяжного болта:

Принимаем dб=10мм.

Диаметр штифтов dшт=(0,7…0,8)dб=8мм.

Толщина фланца по разъему δфл= dб=10мм.

Диаметр фундаментного болта:

Расчет и проектирование привода лебедки

Принимаем dф=16мм.

Ширина фланца bф≥1,5 dф=25мм.

Толщина лапы фундаментного болта δф=1,5 dф=24мм.

Высота центров редуктора Но=(1…1,12)аw=250мм.

Расстояние между торцом шестерни (вдоль оси) и выступающими элементами внутренней части корпуса Δ1=0,8δкор=6мм.

Расстояние между зубьями колеса в радиальном направлении и торцом фланца, днищем основания Δ2=1,2δкор=10мм.

Диаметр горловин корпуса под подшипник (см. разрез Б-Б на рис.13):

D=1,25dподш+10.

D1=1,25х90+10=122,5мм. Принимаем D2=125мм.

D2=1,25х190+10=247,5мм. Принимаем D2=250мм.

Дно корпуса делаем наклонным в сторону сливного отверстия. Угол уклона 1є.

Остальные размеры определяем по месту при разработке чертежа.

9. Определение конструктивных размеров крышек подшипников


Так как плоскость разъема корпуса проходит по осям валов крышки подшипников делаем закладными (рис.14).


Расчет и проектирование привода лебедки

Рис.14 Конструкция крышек подшипников


Определяем основные размеры крышек подшипников и заносим результаты в табл.8.


Таблица 8. Основные размеры крышек подшипников

Размер Обозначение Значение


ведущий вал ведомый вал
Наружный посадочный диаметр, мм D 90 190
Внутренний диаметр по валу, мм d 39 76,5
Внутренний диаметр по подшипнику, мм d1 77 175
Внутренний диаметр по манжете, мм d2 52 100
Толщина стенки и ширина буртика, мм b 6 5
Высота буртика, мм с 5 5

Остальные размеры определяем конструктивно при построении чертежа.

10. Выбор масла, смазочных устройств


Используем картерную систему смазывания. В корпус редуктора заливаем масло так, чтобы венец зубчатого колеса был в него погружен на глубину hм (рис.15):


Расчет и проектирование привода лебедки

Рис.15 Схема определения уровня масла в редукторе


hм max Ј 0.25d2 = 0.25Ч166,67 = 42мм;

hм min = 2Чm = 2Ч2 = 4мм.


При вращении колеса масло будет увлекаться его зубьями, разбрызгиваться, попадать на внутренние стенки корпуса, откуда стекать в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которым покрываются поверхности расположенных внутри корпуса деталей, в том числе и подшипники.

Объем масляной ванны принимаем из расчета 0,5 л на 1кВт передаваемой мощности V = 0,5ЧPII = 0,5Ч5,335 = 2,7 л.

Контроль уровня масла производится жезловым маслоуказателем, который ввинчивается в корпус редуктора при помощи резьбы. Для слива масла предусмотрена сливная пробка. Заливка масла в редуктор производится через съемную крышку в верхней части корпуса.

Выбираем смазочный материал. Для этого ориентировочно рассчитаем необходимую вязкость:

Расчет и проектирование привода лебедки

где ν50 – рекомендуемая кинематическая вязкость смазки при температуре 50°С;

ν1 =170мм2/с – рекомендуемая вязкость при v=1м/с для зубчатых передач с зубьями без термообработки;

v=2м/с – окружная скорость в зацеплению

Расчет и проектирование привода лебедки

Принимаем по табл.8.32 118мм2/с. По табл.8.34 выбираем масло И-100А.

И для шестерни, и для зубчатого колеса выберем манжетные уплотнения типа 1 из ряда 1 по ГОСТ 8752-79. Установим их рабочей кромкой внутрь корпуса так, чтобы обеспечить к ней хороший доступ масла.

11. Выбор и проверочный расчет муфт


По задания – муфты упругие втулочно-пальцевые.

Исходя из отверстий в полумуфтах под валы и моментов на валах выбираем муфты: входную 250-32-1.1-38 11.2-У3 ГОСТ21424-75 с отверстиями 32 и 38мм, Т1=81Нм;

выходную 2000-75-1.1- 80-11.2-У3 ГОСТ21424-75 с отверстиями 75 и 80мм, Т3=1964Нм. Выходная муфта выполнена со шкивом, для торможения плоским ремнем.

Проводим проверочный расчет упругих элементов на смятие по формуле:


σсм=2Т/(zDld)≤ [σсм] (11.1)


и проверочный расчет пальцев на изгиб:


σи=Тl/(0,1d2zD)≤ [σи] (11.2)


где D-диаметр окружности расположения центров пальцев,

z-число пальцев,

d- диаметр пальца под резиновой втулкой,

[σсм] =2…4МПа - допустимое напряжение на смятие для резины.

[σсм] =60…80МПа - допустимое напряжение на изгиб для пальца.

Из справочника выбираем данные для входной 1 и выходной муфт:

Т1=250Нм; Т2=2000Нм; D1=100мм; D2=200мм; d1=14мм; d2=24мм; l1=121мм; l2=218мм; z1=6; z2=8.

Подставив значения в формулы (11.1) и (11.2) получим:

σсм1=2·250/(6·100·121·14)=0,49МПа≤ [σсм]

σсм2=2·2000/(8·200·218·24)=0,47МПа ≤ [σсм]

σи1=250·121/(0,1·142·6·100)=0,025МПа≤ [σи]

σи2=2000·218/(0,1·242·8·200)=0,004МПа≤ [σи]

Условия выполняются.


12. Сборка редуктора


Перед сборкой внутренние части корпусных деталей очищают и покрывают маслостойкой краской. Перед общей сборкой собираются валы с насаженными деталями. Подшипники перед сборкой нагреваются в масле. На ведущий вал-шестерню устанавливаются подшипники. В сквозную крышку подшипника устанавливается манжета. На вал-шестерню устанавливаются подшипниковые крышки и собранный вал устанавливается в корпус редуктора. На промежуточный вал надевается шевронная шестерня и 2 косозубых колеса. На промежуточный вал устанавливаются подшипниковые крышки и собранный вал устанавливается в корпус редуктора. На выходной вал надевается шевронное колесо, устанавливаются подшипниковые крышки и собранный вал устанавливается в корпус редуктора. Регулировка подшипников производится набором регулировочных прокладок, устанавливаемых между корпусом и подшипниковыми крышками. Сверху устанавливается крышка корпуса и прикрепляется к основанию. Устанавливается пробка для слива масла и жезловый маслоуказатель. В собранном редукторе быстроходный вал должен свободно проворачиваться. Собранный редуктор заливается маслом и обкатывается.


13. Техника безопасности


Вращающиеся детали (входные и выходные концы валов, муфты) должны иметь защитный кожух. Электрические провода должны иметь защитный экран (пропущены через трубку).

Концы проводов (подвод к электродвигателю) должны быть изолированы и закрыты крышкой.

Установка должна быть заземлена.

Рама после слесарной обработки и сварки не должна иметь заусенцев.

Проводить осмотр зацепления, регулировки, устранение неисправностей и сборочно-разборочные работы необходимо только при выключенном электродвигателе.

При работе не прикасаться к вращающимся деталям. Техническое обслуживание производить при полной остановке электродвигателя.

Регулярно контролировать уровень масла в редукторе и следить за наличием смазки в подшипниках.

Не допускать к работе лиц, которые не прошли инструктаж по технике безопасности и обслуживанию редукторной установки.

При обслуживании, монтаже и демонтаже пользоваться только исправными инструментами.

Не допускать грубых ударов по деталям во избежание их порчи.

При хранении все открытые детали должны иметь антикоррозийную окраску или смазку. Нельзя хранить детали в сырых помещениях.

Список использованной литературы


1. Дунаев П.Ф., Детали машин, Курсовое проектирование. М.: Высшая школа, 1990.

2. Скойбеда А.Т., Кузьмин А.В., Макейчик Н.Н., Детали машин и основы конструирования, Минск: «Вышейшая школа», 2000.

3. Шейнблит А.Е. Курсовое проектирование деталей машин: Учеб. пособие. – М.: Высш. шк., 1991

4. Чернин И.М. и др. Расчеты деталей машин. – Мн.: Выш. школа, 1978

5. Анурьев В.И. Справочник конструктора-машиностроителя: В 3 т. -8-е изд. перераб. и доп. Под ред. И.Н. Жестковой. – М.: Машиностроение, 1999

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: