Xreferat.ru » Рефераты по промышленности и производству » Вирощування монокристалів кремнію

Вирощування монокристалів кремнію

) виникає багато зародків, які дають початок зросту із 3-5 кристалів. Якщо початок капіляру розширити в малу ковбочку ( рис. 4, б) за ідеєю Бріджмена число окремих кристалів зменшується, і в оптимальних випадках росте один монокристал. В зігнутих капілярів ( рис 4, в, г ), відбираються один зародок, виникне один монокристал, охоплений полікристалічною фазою. При введенні в посудину стакана з конічним дном, яке закінчується вигнутим капіляром, можливо получити великий монокристал, частково ( рис. 4, д ) або повністю ( рис. 4, е ) заповнюючий посуд для кристалізації.

Переміщення кристалу в температурному градієнті. Цей метод, розроблений Чохральським і він названий його іменем, в даний час став одним із основних промислових методів вирощування монокристалів напівпровідників. Метод легко пристосовується до різних умов, внаслідок чого для нього існує найбільше число різних варіантів конструктивного оформлення. При витягуванні кристалу цим способом в розплав опускається гачок, де він змочується за допомогою часового механізму піднімається, витягуючи за собою розплав, кристалізуючись в довгий тонкий монокристал (рис. 2, и), замість гачка часто використовують кристалоносець з затворочним кристалом (рис. 5 ): в одному із найбільш розповсюджених варіантів кристалоносець зрощується. Особливо великого значення набуває метод Чохральського для вирощування Ge і Si. Витягування цих кристалів проводиться, як правило, у вакуумні плавильні печі.Отримані кристали мають діаметр до 2 см і масу до 40 – 70 г. Методом витягування кристалів способом Чохральського.


Вирощування монокристалів кремнію

Рис.5 1, 2 – напрям витягування і кручення; 3 – розплав; 4 – тигель;

5 – графітовий тигель ; 6 – затравка ; 7 – монокристал;

8 – високочастотний нагрівач ; 9 – крутильний столик.

Чохловського можна вирощувати не тільки вузькі і довгі, але і дископодібні кристали. Вирощування кристалу, знаходиться в неперервному контакті з поверхнею розплаву, і допоміжним нагрівом зовнішнього краю диску, отримувалися диски діаметром від 150 мм і масою від 450 до 1800 г. для пришвидшеного охолодження, обдувають аргоном.

За допомогою цього методу вирощування також з’єднання, розпадаючі поблизу точки плавлення. Бінарні системи In – As, Ga – As, In – P, Ga – P та інші, мають одне з’єднання типу АВ, плавлячись конруєнтно лише при високій напрузі пару легкого компонента. Тому витягування повинно відбуватися в закритому посуді, який витримує великий тиск ( рис.6).


Вирощування монокристалів кремнію

Рис. 6Кристалізація з’єднання, розкладаючись Поблизу точки плавлення 1 – магніт; 2 – піч опору; 3- розплав; 4 – графітовий тигель ; 5 – кварцова труба ; 6 – залізний сердечник ;7 – штанга для витягування ; 8 – затравка ; 9 – високочастотний нагрівач.

кремній напівпровідниковий монокристал

Розміри кристалів InAs і CaAs досягали в довжину 40 -60 мм при діаметрі 8 – 10 мм.

Зонна плавка. Метод зонної плавки, розроблений для цілої очистки напівпровідників Пфаном. Плавка називається зонною, бо розплавлений не весь елемент, а вказана зона, яка має ширину, набагато меншу від довжини всього елемента (рис. 2, н ). Фізичний механізм очищення напівпровідника з допомогою зонної лавки ґрунтується в застосуванні ефекту розшарування, при якому кристал і рідка фаза мають різну розчинність домішок. Відношення розчинностей домішок в розплавленому і твердому стані називається коефіцієнтом розподілу k*.k* постійне тільки для відносно малих концентрацій домішок приблизно 1015 – 1017 см3. Якщо k* більше 1, то, кристалізуючись, злиток очищається від домішок. При k* більше 1 очищається розплав, а злиток забруднюється. Концентрація домішок в кристалі рівна


Вирощування монокристалів кремнію


Де Cx – концентрація домішок в кристалі у перерізі х ; С0 – концентрація вихідної домішки в розплаві; Мх – вага монокристалу до перерізу х ; М0 – вага вихідного розплаву ; k*=Cs/Cl - коефіцієнт розподілу ; Cs і Cl – концентрація домішок у твердій і рідкій фазах.

При зонній перекристалізації зона повільно переміщається вздовж зразка від одного кінця до другого ( рис. 7).


Вирощування монокристалів кремнію

Рис. 7 Частина діафрагми, на які показано принцип зонного очищення ( для цієї діафрагми коефіцієнт розподілу k*>1 )


Фізичний механізм очищуючої дії зонної плавки найкраще може бути показаний на прикладі діаграми стану типу ” сигари” – діаграми двох металів, які в рідкому і твердому стані повністю розчиняються один в одному.

В умовах зонної плавки переважно склад відповідає лівому куту фазної діаграми, коли речовина А очищена від домішок В ( рис. 7 ). В процесі затвердіння домішка, В розподіляється між твердим злитком і розплавом відповідно до коефіцієнта розподілу. Якщо концентрація домішки в розплаві С0, то затверділий шар має концентрацію домішки k*C0. Для домішки, яка знижує точку плавлення речовини А, k*<1 і тверда фаза має в собі менше домішок, ніж рідка.

При переміщенні фронту плавлення концентрація домішок в розплаві збільшується вздовж лінії ліквідуса PQ. Таким чином, при переміщенні розплавленої зони вздовж злитка зліва на право - його ліва частина має мінімальну кількість домішок, а права – максимальну. Коли концентрація домішок в розплаві досягає величини C0/k*? , в подальшому вона вже не змінюється. Розглянутий процес отримав назву – нормальна кристалізація і є найпростіший метод очищення.

Для очищення речовини його завантажують у довгу лодочку і плавлять. Потім зливаючи частину лодочки охолоджується, і в неї кристалізується чиста речовина при k*<1 і збагачується домішками при k*>1 . Розподіл домішок вздовж затверділого при нормальній кристалізації злитка наведено на рисунку 8, б. На практиці вводять поняття ефективне розподілу k*еф, який враховує дію різних допоміжних факторів і лежить в діапазоні k*<k*еф<1. На величину k*еф особливо вплив робить кінетика затвердіння.


Вирощування монокристалів кремнію


Тут р – товщина дифузійного шару в розплаві перед фронтом кристалізації; Vp – швидкість росту; D – коефіцієнт дифузії в рідкій фазі.

При зонній плавці розплавлена зона переміщується вздовж довгого злитка. На фронті кристалізації при k*<1 домішкові атоми переходять у розплав у великій кількості, ніж із рідкої фази в тверду на граничній поверхні твердіння, на цій поверхні кристалізується очищений матеріал. Розподіл домішок до ( пунктиру ) і після ( рівна лінія ) однократного походження розплавленої зони показано на рис. 8,а . В злитку при одноразовій зонній перекристалізації отримуємо в лівій частині особливо чистий шматок і в праві – забруднений шматок. Середня частина очищується рівномірно. Якщо виключити забруднену зону, то концентрація розподіл концентрації примі сей вздовж злитка після однократного проходу розплавленої зони (а) і розподіл розчиненої примісі при затвердінні злитка при різних коефіціентах розподілу k* ( від 0,01 до 5 ) (б), d – довжина закристалізованої частинки злитка.


Вирощування монокристалів кремнію

Рис 8


Злитку на відстані d від початку вираховується виразом


Вирощування монокристалів кремнію


Де l – довжина розплавленої зони.

Подальше очищення виконується при повторному проходженні зони через злиток.

Очищення стає ефективним, коли концентрація домішок у кінцевому матеріалі менша за значення її максимальної розчинності.

Для домішок з k* в діапазоні 0,1<k*<10 висока степінь очищення можлива лиш при їх концентрації, набагато меншої величини максимальної розчинності. Для речовин з k* ~ 1 очищення можливе у вигляді з’єднань. Таким методом очищують, наприклад, Ga і In у вигляді трихлориду і трийодиду відповідно.

В більшості випадків дифузними домішками в твердій фазі можна знехтувати, бо коефіцієнт дифузії не перевищує 10-8 см2/сек. Але є ряд виключень, наприклад, мідь, для якої коефіцієнт дифузії в Ge досягає 10-5 см2/сек. Дифузія може бути підвищеною також за наявності дефектів кристалічної структури. Але головна перешкода швидкості проходу зони є в основному малою швидкістю дифузії у рідкій фазі. Чим вища швидкість росту, тим менше часу дифузійного видалення домішки від кристалізації розділеної границі. В цьому випадку перед фронтом кристалізації виникає шар підвищеної концентрації домішки. Цей шар розсмоктується шляхом перемішування. Важливим моментом при зонній кристалізації є збереження стійкості фронту кристалізації. Нестійкість веде до оглублення рельєфу фронту кристалізації і включення частинок розплаву і домішок.

Очищення методом зонної плавки є одним із найбільш ефективних промислових методів отримання особливо чистих напівпровідникових матеріалів. Якщо в злиток вводиться монокристалічна затравка, тоді отримується матеріал у вигляді монокристала. При очищені Ge з граничним опором 0,02 ом*см через шість – вісім проходів отримуємо злитки з граничним опором 30 – 50 ом*см.

Зонною перекристалізацією отримані великі кристали InAs, InSb, GaTe. Останній очищується в герметичній ампулі в присутності пари Cd ( рис 9 ). Метод проведення зонної перекристалізації в парі легкого компонента знайшов широке застосування для очищення і отримання монокристалів бінарних і потрійних напівпровідникових з’єднань ( Ag2S, Ag2Se, Cu2Se, CuAsS2, CuAsSe2 та інші).

Важливим промисловим варіантом зонної плавки є безтигельна зонна плавка ( рис 10 ). В цьому варіанті виключається потрапляння домішок із матеріалу тигля, ампули і лодочки. При нагріві безтигельної плавки не використовують розжарений кільцевий нагрівач, бо з нього на поверхню злитка може потрапити домішка.


Вирощування монокристалів кремнію

Рис 9 Зонна частка телуриду кадмію

1 – піч, яка робить зону; 2 – піч з двома секціями; 3 – кварцовий посуд; 4 – графітова лодочка; 5 – розплавлена зона ; 6 – кадмій, який робить атмосферу парів Cd над лодочкою; 7 – трубки з термоелементами (а); розподіл температур вздовж печі (б).


Тому переважно при нагріванні використовують високочастотний нагрівач або електронне бомбардування ( рис 9 ) метод безтигельної зонної плавки найбільш перспективний для отримання монокристалічних стержнів, які є дуже тугоплавкі, наприклад, бору ( Тпл=2300 С0 ). Компактний стержень із порошкоподібного бору пресується при 7*105 кн/м2 і поступово нагрівається у вакуумі до температури 300, а потім до 500 С0. В якості наповнювача використовується борна кислота, яка при цій температурі розкладається з утворенням трьохоксиду бору, який скріплює частинки при підвищенні тиску. Зона утворюється кільцевим індуктором ВЧ. При високій температурі трьохоксид бору випаровується, і після повторного проходження зони стержень перетворюється в монокристал.


Вирощування монокристалів кремнію

Рис. 10 Зонна плавка за допомогою електронного бомбардування.

1 – отвори для підйому стержня напівпровідника; 2 – заземлюючий вивід; 3 – вивід для манометра; 4 – стержні для встановлення променя електронів; 5 – розплавлена зона; 6 – піднімальне обладнання; 7 – електроди; 8 – зразок; 9 – вакуумна посудина; 10 – захист від випромінювання; 11 – вольфрамовий дріт; 12 – відвід до вакуумного насосу.


Вирощування кристалів із розчинів. Кристалізація із розчину проходить подібно до кристалізації із розплаву. Різниця між ними є в більш вузькій метастабільній області і підвищеній ймовірності виникнення зародків. При вирощуванні із розчину важливу роль відіграє також кількість розчину, зменшення якого провокує довшому існуванню метастабільного стану в умовах перенасичення.

Перенос частинок dm/dt через шар рідини товщиною d, дотичний до поверхні, яка росте, рахується за рівнянням Фіка ( другий закон )


Вирощування монокристалів кремнію

Тут D – коефіцієнт дифузії ; Lг – розмір ростучої грані кристалу; С – концентрація пересічного розчина; С0 – концентрація насиченого розчину.

Розрізняють наступні варіанти методу: 1) розчинником є один із компонентів вирощуваного кристалу; 2) розчинник не є таким компонентом.

Вирощування найчистіших кристалів потребує першого методу, але другий спосіб допускає більш широке управління умовами кристалізацї. Застосування першого методу іноді обмежується недобрими впливом діаграми стану.

Вибір методу втілюється на основі діаграми температура – розчинність, причому перенасичення робиться охолодженням розчину, насиченого при вищі температурі. Процес проводиться в умовах, коли ймовірність утворення зародків мінімальна, і у ванні підвішують один або декілька зародків кристалів.

В більшості методів існує перемішування розчину. Для речовин з високою розчинністю відбувається ріст з швидкістю не більше 100 – 300 моношарів в секунду. При нормальній розчинності температурний коефіцієнт розчинності переважно дуже малий, і вирощування монокристалу краще в умовах випаровування розчинника. В умовах, коли температурний коефіцієнт розчинності має проміжне значення, доцільна образна вакуумна кристалізація - бо у вакуумі випари супроводжуться інтенсивним зниженням температури. Рисунок 11 пояснює особливісті кожного з цих методів. При сильній зміні розчинності з температурою, перехід в область 1 із області 3 досягається найбільш ефективне охолодження при постійному значенні розчинності ( стрілка на рис. 11, а ). У випадку слабої розчинності керуючі зміни режиму кристалізації із зміщенням з 3 в область 1 найбільш просто втілюються за допомогою випаровування розчинника ( стрілка на рис. 11, б ).

В умовах пониження розчинності з підвищенням температури єдиним методом є випаровування. За допомогою зниження температури здійснюється вирощування ряду кристалів із водних розчинів.

Важливими об’єктами, вирощування яких здійснюється із розчину, є кристали сегнетоелектриів: дигідрофосфат амонію (ADP) – (NH4)H2PO2 ; дигідрофосфат калію (KDP) – KH2PO4; сегнетова сіль (KNГ) – NaC4H4O6 * 4H2O та інші.

При використанні розплавів – розчинників компоненти повинні володіти повною розчинністю в розплавленому стані і не утворювати твердих розчинів.

Цей метод найбільш перспективний для вирощування кристалів напівпровідників. Із розплавів срібла, цинку, золота, олова, індію і галію кристали вирощувались методом зонної плавки з допоміжним температурним градієнтом. Тонкий шар розплавленого кремнієвого сплаву поміщають між двома силікатами Si ( рис. 12 ). Кристалізація Si із розплаву Si+Au в лівій границі розплавленої зони відбувається тому, що розчин поблизу неї є перенасичений при Т1. У правій границі розплавленої зони при Т2>Т1 кремній переходить в розчин. При наявності температурного градієнту, зображеного на рисунку, вся зона поступово переміщується як ціле зліва на право, залишаючи за собою перекристалізований монокристал Si, який насичений Au. Ростучи в цих умовах кристали Si мають довжину до 2 см і концентрацію золота приблизно 10-6 %. Із розплавів в сріблі ростуть шестикутні пластинки січною 0.5 – 2 мм і товщиною 0.1 – 0.3 мм, тільки з великим вмістом домішок ( до 0.15 %).

Цим методом вирощуються монокристали Si, насичений Au. Ростучі в цих умовах кристали Si мають довжину до 2 см і концентрацію золота приблизно 10-6 % . З розплаву в сріблі і цинку ростуть шестикутні пластинки січною 0.5 – 2 мм і товщиною 0.1 – 0.3 мм, але з більшим вмістом домішки ( до 0.15 % ).


Вирощування монокристалів кремнію

Рис. 11 Вибір методу вирощування на основі діаграми температури - розчинність. А – розчин KNO3 при понижені температурі; б - розчин NaCl при ізотермічному випаровуванні води; 1 - область метастабільного перенасичення; 3 - область перенасичення внаслідок переохолодження; 4 - крива перетину; 5 - крива насичення.


Вирощування монокристалів кремнію

Рис. 12 Використання зонної плавки для вирощування кристалів Si із сплавів Si - Au

Цим методом вирощуються також ряд інших напівпровідників B, Si, сіре олово ряд окислів: BaO, ZnO; ортоферити рідкоземельних M3, Fe3O3 (М галоліній, європій, лантан, неодом, паразеодим, самарій або іттирій ). В послідньому випадку використовуються розплави окису свинцю з відношенням вихідних речовин до PbO 1:6. Кристали титанату бакію вирощуються із сплавів щілинних і щілинно-земельних з’єднань. Великі кристалічні пластини BaTiO3 отримані із розплаву безводного фторида калію при охолодженні його від 1200 до 875 0С за час 8 годин.

Злитки, які складаються із декількох кристалів InP, були отримані із розплаву індію і фосфіду індію. Високі температури плавлення і більше значення тиску дисоціації з‘єднань A3B5 обумовлюють необхідність здійснення атмосфери летючого компонента. Тому кристали A3B5 вирощують в герметично закритому посуді.

В загальному випадку для A3B5 максимальна точка плавлення не співпадає із стехіометричнм складом. Оскільки кожні точці ліквідуса відповідає свій тиск пари, тому зміни його в прцесі кристалізації будуть призводити до зміни складу кристалізованх з’єднань. Шкідливий компонент веде себе як з коефіціентом розподілу k*<1 . Якщо це легкий компонент B, то буде відбуватися його відтіснення в розплав, який відповідно збагачується компонентом B.Останнє зумовлює порушення рівноваги між розплавом і паровою фазою.

Відновлення рівноваги виконується за рахунок переходу залишку компоненту B із розплаву в парову фазу. В свою чергу, якщо тиск пари, який робиться джерелом, буде за якихось причин змінюватися, то склад розплаву і ростучого кристалу також буде постійним.

Ріст кристалів із парової фази. Ріст кристалів із газової фази є одним з найбільш вивчених процесів. Розміри кристалів, вирощуваних цим методом, обмежуються малими транспортними можливостями газу як речовина, провідником і відвідником тепла кристалізації, а також легкістю утворення турболентних потоків поблизу ростучого кристалу. За допомогою цього методу вирощують кристали теллура і селену. Кристали сульфіду кадмію вирощуються із газової фази декількома методами: 1) газодинамічний потік, в якому пари Cd поглинаються сірководнем або парами сірки і на холодних частинках посуду осідає CdS; 2) квазіорівномірно, при якому CdS кристалізується із пари CdS в холодних частинах посуду за умовами, близькими до рівноважних.

В першому випадку під фарфорову лодочку з Cd, розміщеного в кварцовій трубці, пропускається при 800 – 1000 0С вивід суміші з сірководнем. Cd реагує з сірководнем, і перетворившись в CdS осідає у холодних частинках трубки у вигляді лентоподібних кристлів ~ 3х5х0.2 мм. При пропусканні суміші водню і селену росли кристали CdSe розміром 1 -2 мм. Кристали CdS, ZnS також можуть бути вирощені за рахунок переносу пари азоту або аргону. Форми росту кристалу і загальний їх облік при вирощуванні із газової фази представлені на рисунку 13.

Ростучі кристали можуть бути леговані домішками ( наприклад, Cl, Ga, Zn ) в кількості 0,01 – 0,1%. Наявність домішок впливає на форму росту. Наявність хлору обумовлює ріст в товщину. Лентоподібні кристали виникають при вмісті Ga в концентрації менше 1019 см-3. При NGa>1019 см-3 ростуть гексагональні призми довжиною до 30 мм і діаметром 0,3 – 1 мм.


Вирощування монокристалів кремнію

Рис. 13 Форма кристалів CdS при вирощуванні із газової фази.

1 – пластинкова; 2 – голкова; 3 – тип 1 з прямокутними штрихами; 4 – тип 1 з косими штрихами; 5 – двійники; φ=30, 45 або 600


На форму кристалів впливають також методи вирощування. При сублімації CdS найчастіше зустрічається другий тип кристалів, зображений на рисунку 13. При реакціях випарів кадмію і сірки найчастіше зустрічається п’ятий тип кристалів.


Вирощування монокристалів кремнію

Рис.14 Схема Пайпера і Полінга

1 – піч;2 – шитка;3 – кристал 4 – муллітома труба;4 – ампула (а); розподіл температури вздовж печі (б)


Можливість отримання великих монокристалів CdS методом сублімації була реалізована Пайпером і Полішем, які використовували принцип переміщення сублімарної зони через ущільнену полікристалічну засипку, поміщену у замкнуту кварцову ампулу. Схема установки зображена на рисунку 14. Кварцова ампула з однієї сторони має затравочний корпус з припаяним до нього кварцовим стержнем для покращення умов зародження зародків монокристалу і з відкритої сторони щільно входячу в середину ампули запаяну трубку. Мулітовану трубку ( яка служить для захисту ) з розміщеними всередині неї ампулами з ущільненим порошком переміщають з швидкістю 0,5 – 1,5 мм/год в печі, маючи (показано у верхні частині на рисунку 14) розподіл температури. При початковому положенні конічного носика ампули в зоні максимальної температури конус повністю очищується від полікристалічної засипки, а потім по мірі руху ампули в холодну зону в ньому виникає монокристалічний зародок, розростаючись по діаметру ампули на довжину декількох сантиметрів.

Металографічне і рентгенівське дослідження показують, що в кристалах CdS, отриманих із пари, присутні дефекти упаковки і двійники 15. Вивчення фігур росту вказує на наявність гвинтових дислокацій і суттєвих розбіжностей швидкості травлення в різних кристалографічних напрямах. На основі цих результатів припускається, що грані, перпендикулярні осі С, сильно порушені.


Вирощування монокристалів кремнію

Рис. 15 Двійник CdS Ф=580


Методом росту із пари получають тяжкі кристали сульфіду цинку розміром до 10х2х2х мм. Кристали ZnS ростуть більш ідеальними, якщо до пари додати домішои як: ZnO або сіль міді. Крім зміни модифікації “ кубічна гексагональна ”, при 10200С існує зворотнє перетворення при 12400С ” гексагональна – кубічна ”. Гексагональна модифікація є стійкою в широкому діапазоні температур. Кубічна - стабілізується домішкою 0.5 – 1.0 моль%.

Методом росту із пари отримують кристали PbSe розміром 6х6х2 мм і сульфіду олова, а також сульфіду стронцію. Великий інтерес представляє ріст із пари кристалів SiC. Гексагональна або α- форма карбіду кремнію стійка нище 21000С. Між 2100 і 24000С відбувається перетворення в кубічний SiC. Чисті компоненти Si і С вступають у реакцію лише при температурі, вищій 14300С.


ВИКОРИСТАНА ЛІТЕРАТУРА


1. Матеріали мікроелектронної техніки В. М. Андреєв Москва 1986

2. Методи вирощування напівпровідникових кристалів Р. А. Матіш В. Н. Лунь Москва 1988

Размещено на