Xreferat.ru » Рефераты по физике » Электродинамические усилия в электрических аппаратах

Электродинамические усилия в электрических аппаратах

следует иметь в виду еще одно весьма важное обстоятельство. В отличие от постоянного тока, при котором максимальное значение тока короткого замыкания равно его установившемуся значению Iуст (если пренебречь изменением сопротивления за счет нагрева), при переменном токе в зависимости от момента короткого замыкания первая амплитуда ударного тока Iудmax может существенно превосходить амплитудное значение установившегося тока короткого замыкания (рис. 18):

Электродинамические усилия в электрических аппаратах (54)

Максимальное усилие, на которое следует в таком случае рассчитывать устройство, будет

Электродинамические усилия в электрических аппаратах (55)

т.е. при равном значении установившегося тока короткого замыкания при переменном токе электродинамическая сила может быть почти в 6,5 раза большей, чем при постоянном токе.

При трехфазной сети токи в фазах будут сдвинуты на 120 электрических градусов:

Электродинамические усилия в электрических аппаратах

Электродинамические усилия в электрических аппаратах

Электродинамические усилия в электрических аппаратах

При расположении проводников в одной плоскости


Электродинамические усилия в электрических аппаратах


Рассмотрим случай, когда проводники расположены в одной плоскости (рис. 19). Проводник 1 будет взаимодействовать с проводниками 2 и 3. Пусть сила взаимодействия между проводниками 1 и 2 при единице тока равна F12, а между проводниками 1 и 3 — F13. Токи в фазах равны. Тогда полная сила, действующая на проводник 1, определится выражением

Электродинамические усилия в электрических аппаратах (56)

В отличие от однофазного тока при трехфазном токе сила меняется не только во времени, но и по знаку. При положительных значениях sin2ωt и cos2ωt получим силу, притягивающую проводник 1 к двум другим. При отрицательных значениях sin2ωt и cos2ωt получим силу, отталкивающую проводник 1 от двух других.


Электродинамические усилия в электрических аппаратах


Проводники обычно располагаются на равном расстоянии друг от друга. В таком случае F13 = 0,5F12, и тогда в установившемся режиме (рис. 20) максимальная притягивающая сила

Электродинамические усилия в электрических аппаратах (57)

а максимальная отталкивающая сила

Электродинамические усилия в электрических аппаратах (58)

Силы, действующие на проводник 3, будут такими же, как и силы, действующие на проводник 1, но обратными по направлению.

Усилия, действующие на средний проводник, F2 определятся уравнениями, аналогичными предыдущим. Если принять силу взаимодействия при единице тока между проводниками 2 и 3 равной F23 а между проводниками 2 и 1-равной F21 = F12 то при равных токах и равных расстояниях между проводниками F23 = F21 = F12 и максимальная сила, действующая на средний проводник, определится из уравнения

Электродинамические усилия в электрических аппаратах (59)

Таким образом, при расположении проводников в одной плоскости сила, действующая на средний проводник, оказывается большей, чем сила, действующая на крайний проводник.

С учетом переходной составляющей, возникающей в момент короткого замыкания, максимальные силы будут большими, чем приведенные выше. Максимальное отталкивающее усилие будет при коротком замыкании в момент φ =-15° и составит

Электродинамические усилия в электрических аппаратах (60)


Электродинамические усилия в электрических аппаратах


Притягивающая сила при φ =-15° будет близка к нулю. Максимум притягивающей силы имеет место при коротком замыкании в момент φ =75°:

Электродинамические усилия в электрических аппаратах (61)

Значение отталкивающей силы при φ = 75° составит 0,75F12. Изменение сил во времени при φ = -15° (кривая 1) и φ = 75° (кривая 2) в переходном режиме короткого замыкания приведено на рис. 21.


При расположении проводников правильным треугольником

Рассмотрим еще один случай, когда провода трехфазной цепи расположены правильным треугольником. Определим силы, действующие на проводник 1. Сила взаимодействия между проводниками 1 и 2 (Fl2) будет направлена по прямой I, а сила взаимодействия между проводниками 1 и 3 (F13) — по прямой II. Каждая из сил будет переменной во времени, а общая сила (F1), полученная путем геометрического сложения переменных по значению сил Fl2 и Fl3, будет переменной не только во времени, но и по направлению.

Изменение полученной силы F1 по направлению и по значению может быть охарактеризовано вектором ОА, конец которого будет скользить по окружности, как это показано на рис. 22:

Электродинамические усилия в электрических аппаратах (62)


Электродинамические усилия в электрических аппаратах

Проекция силы на ось х всегда направлена в одну сторону. Знак ± в уравнении (62) означает, что для 2ωt>180° следует брать знак минус. Изменение силы во времени не связано с изменением знака.

Каждый из двух других проводников испытывает такие же силы, но с соответствующим сдвигом во времени и пространстве.

С учетом ударного тока максимум силы получается при условии φ = 0, и сила меняется по закону

Электродинамические усилия в электрических аппаратах (63)


Электродинамические усилия в электрических аппаратах


Знак минус следует брать для всех отрицательных значений sin ωt/2. Направление и значение силы для любого момента времени определяется вектором ОА, скользящим по кривой (рис. 23) и отложенным под углом ωt/2 к оси ординат.

В трехфазной сети могут быть однофазные, двухфазные и трехфазные короткие замыкания, но так как токоведущие части должны противостоять электродинамическим силам при любом виде короткого замыкания, то, следовательно, расчет надо вести на тот вид короткого замыкания, при котором силы получаются большими.

При двухфазном коротком замыкании электродинамические силы получаются большими, чем при трехфазном, если предположить, что ударный ток в обоих случаях одинаков. Практически ударный ток при двухфазном коротком замыкании меньше, чем при трехфазном. Поэтому расчет токов короткого замыкания рекомендуется вести всегда на случай трехфазного короткого замыкания.

Расчет ведется на максимальное усилие, получаемое при ударном токе. Однако, учитывая, что сила переменна и ее максимум существует очень короткое время, для допустимых напряжений в материале берут большие значения, чем при постоянно действующей силе.