Xreferat.com » Рефераты по физике » Механика жидкостей и газов в законах и уравнениях

Механика жидкостей и газов в законах и уравнениях

безраз­лично, что считать движущимся — тело или среду. Удобно предполагать тело неподвижным, а среду дви­жущейся. Поэтому мы будем, как правило, рассмат­ривать действие на неподвижное тело набегающего

па пего потока, помня, что результаты, полученные в этом случае, будут справедливыми и для случая движения тела относительно неподвижной среды.

Силу F, с которой набегающий поток действует на тело, можно разложить на две составляющие: на­правленную вдоль скорости v невозмущенного потока силу X, называемую лобовым сопротивлением, и перпендикулярную к v силу У, называемую подъемной силой. Лобовое сопротивление слагается из сил давления и сил внутреннего трения. Очевидно, что на тело, симметричное относительно направления скорости потока v, может действовать только лобовое сопротивление, подъемная же сила в этом случае будет отсутствовать.

Можно доказать, что в несжимаемой идеальной жидкости равномерное движение тела произвольной формы должно было бы происходить без лобового сопротивления. Этот результат получил название парадокса Даламбера.


Механика жидкостей и газов в законах и уравненияхПокажем отсутствие лобового сопротивления на примере обтекания идеальной жидкостью очень длин­ного («бесконечного») цилиндра (рис. 43.1). Не обла­дая вязкостью, идеальная жидкость должна сколь­зить по поверхности цилиндра, полностью обтекая его.


Механика жидкостей и газов в законах и уравнениях


Поэтому линии тока будут симметричными как отно­сительно прямой, проходя­щей через точки 2 и 3, так и относительно прямой, проходящей через точки 2 и 4. Теорема Бернулли позволяет по картине линий тока судить о давлении в разных точках потока. Вблизи точек 1 и 3 давление одинаково (и больше, чем в невозмущенном потоке, так как скорость вблизи этих точек меньше). Вблизи точек 2 и 4 давление также одинаково (и меньше, чем в невозмущенном потоке, так как скорость вблизи этих точек, больше) Следовательно, результирующая сил давления на по­верхность цилиндра (которая в отсутствие вязкости могла бы обусловить лобовое сопротивление) будет равна нулю. Как уже отмечалось, такой же результат получается и для тел любой (в том числе и несиммет­ричной) формы. Этот вывод касается только лобового сопротивления. Подъемная сила, равная нулю для симметричных тел (см., например, рис. 43.1), для не­симметричных тел отлична от нуля.

На рис. 43.2 показаны линии тока при обтекании идеальной жидкостью полуцилиндра. Вследствие идеального обтекания линии тока несимметричны относитель­но прямой, проходящей через точки 2 и 4. Однако от­носительной прямой, проходящей через точки, 1 и 3 картина линий тока несимметрична. Вблизи точки 2 где линии гуще, давление меньше, чем вблизи дочки 4 , в результате чего возникает подъемная сила.


Иначе обстоит дело при движении тела в вязкой жидкости. В этом случае очень топкий слой жидкости прилипает к поверхности тела и движется с ним как одно целое, увлекая за собой из-за внутреннего тре­ния последующие слои. По мере удаления от поверх­ности тела скорость слоев становится все меньше и, наконец, на некотором расстоянии от поверхности жидкость будет не возмущенной движением тела. Таким образом, тело оказывается окруженным слоем жидкости с быстро изменяющейся внутри него ско­ростью. Этот слой называется пограничным. В нем действуют силы вязкого трения, которые в конечном счете приложены к телу и приводят к возник­новению лобового сопротивления.

Но влияние вязкости не исчерпывается возникновением сил трения. Наличие пограничного слоя в кор­не изменяет характер обтекания тела жидкостью.


Полное обтекание становит­ся невозможным. Действие сил трения в пограничном

Механика жидкостей и газов в законах и уравненияхМеханика жидкостей и газов в законах и уравнениях


слое приводит к тому, что поток отрывается от по­верхности тела, в результате чего позади тела возни­кают вихри (рис. 43.3). Вихри уносится потоком и постепенно затухают вследствие трения; при этом энергия вихрей расходуется на нагревание жидкости. Давление в образующейся за телом вихревой области оказывается пониженным, вследствие чего результи­рующая сил давления отлична от нуля. Это в свою очередь обусловливает лобовое сопротивление.

Таким образом, как уже отмечалось, лобовое сопротивление слагается из сопротивления трения и со­противления давления. При данных поперечных раз­мерах тела сопротивление давления сильно зависит от формы тела. Наименьшим сопротивлением давления обладают тела хорошо обтекаемой каплевидной формы (рис. 43.4).

Соотношение между сопротивлением трения и сопротивлением давления определяется значением числа Рейнольдса (см. формулу (42.10)). В данном слу­чае v — скорость тела относительно жидкости (или скорость потока, набегающего на тело), l — характер­ный размер тела, например радиус для тела шаровой формы. При малых Re (т. е. при малых v и l) основ­ную роль играет сопротивление трения, так что сопротивлением давления можно пренебречь. С ростом вязкости относительная роль сил трения возрастает. По мере увеличения Re роль сопротивления давления все больше растет. При больших значениях Re в ло« бовом сопротивлении преобладают силы давления.

Определяя характер сил, действующих на тело в потоке жидкости или газа, число Рейнольдса служит критерием подобия и в этом случае. Это обстоятель­ство используется при моделировании. Например, мо­дель самолета ведет себя в потоке газа так же, как и ее прообраз, если кроме геометрического подобия модели и самолета будет соблюдено равенство для них значений числа Рейнольдса.

Механика жидкостей и газов в законах и уравненияхСтокс установил, что при небольших скоростях и размерах тел (т. е. при малых Re, когда сопротив­ление среды обусловлено практически только силами трения), модуль силы сопротивления определяется формулой

Здесь n — динамическая вязкость среды, v — скорость движения тела, l — характерный размер тела, k — коэффициент пропорциональности, который зависит от формы тела. Для шара, если взять в качестве l его радиус r, коэффициент пропорциональности равен 6П.Следовательно, сила сопротивления движению в жидкостях небольших шариков при малых скоростях равна

Механика жидкостей и газов в законах и уравнениях


Надо иметь в виду, что формула Стокса справедлива при условии, что расстояние от тела до границ жидкости (например, до стенок сосуда) много больше размеров тела.

Механика жидкостей и газов в законах и уравнениях

Самолет поддерживается в воздухе подъемной си­лой, действующей на его крылья. Лобовое сопротивление играет при полете самолета вредную роль По этому крыльям и фюзеляжу самолета придают удобообтекаемую форму (рис. 43.5). Вследствие асим­метричной формы и наклонного расположения крыла скорость воздуха над крылом оказывается больше (а, следовательно, давление меньше), чем под крылом. Благодаря этому создается подъем­ная сила. Существенную роль в образовании подъ­емной силы играет вяз­кость воздуха, которая обусловливает образова­ние вихрей, отрывающих­ся от задней кромки крыла. Однако вникать в детали явлений, обусловливающих подъёмную силу, мы не имеем возможности .

Основы теории крыла самолета создал в 1904 г. Жуковский, который сформулировал теорему о подъемной силе и вывел формулу для определения этой силы, являющуюся основой всех аэродинамиче­ских расчетов самолетов.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: