Xreferat.ru » Рефераты по математике » Власні значення і власні вектори матриці

Власні значення і власні вектори матриці

Міністерство освіти і науки України

Криворізький державний педагогічний університет

Кафедра математики


Курсова робота з математики

Власні значення і власні вектори матриці


Студента ІV курсу фізико-математичного факультету

Палія Валерія Миколайовича

Науковий керівник

ст. викладач Корольська Л. Р.


Кривий Ріг

2009 р.


ЗМІСТ


Вступ

Розділ І. Основні відомості з лінійної алгебри

1.1 Види матриць. Дії над матрицями. Визначник

1.2 Власні значення та власні вектори матриці

Розділ ІІ. Знаходження власних векторів і власних значень матриць

2.1 Метод А. М. Данілевського

2.2 Метод А. Н. Крилова

2.3 Метод Леверрьє

2.4 Метод невизначених коефіцієнтів

2.5 Метод скалярних добутків для знаходження першого власного значення дійсної матриці

2.6 приклади задач, що зводяться до відшукання власних значень та власних векторів матриці

Висновки

Список використаних джерел


Вступ


Історично першим розділом лінійної алгебри був розділ теорії лінійних рівнянь. Згодом у зв’язку з розв’язанням системи лінійних рівнянь було введено поняття "визначник" в 1750 році Крамером. У зв’язку з вивченням лінійних рівнянь та визначників вводиться поняття матриці в 1877 році Г. Фробеніусом. В кінці 19 століття з’явився новий розділ лінійної алгебри "Власні значення та власні вектори матриць". Цей розділ має прикладне значення.

Як з’ясувалося, деякі спеціалісти донині цікавляться такою проблемою лінійної алгебри, як обчислення власних значень та власних векторів матриць. Ця проблема виникає в багатьох областях математики, механіки, інженерної справи та геології.

Актуальність нашого дослідження полягає втому, що цілий ряд| інженерних задач зводиться до розгляду систем рівнянь, що мають єдиний розв’язок лише в тому випадку, коли| відоме значення деякого вхідного в них параметра. Цей особливий параметр називається характеристичним, або власним, значенням системи. Із задачами на власні значення інженер стикається в різних ситуаціях. Так, для тензорів напруги власні значення визначає головна нормальна напруга, а власними векторами задаються напрями, пов'язані з цими значеннями. При динамічному аналізі механічних систем власні значення відповідають власним частотам коливань, а власні вектори характеризують моди цих коливань. При розрахунку конструкцій власні значення дозволяють визначати критичні навантаження, перевищення яких приводить до втрати стійкості. Вибір найбільш ефективного методу обчислення власних значень або власних векторів для даної інженерної задачі залежить від ряду чинників, таких, як тип рівнянь, число шуканих власних значень і їх характер.

Об’єктом нашого дослідження є елементи лінійної алгебри.

Предмет дослідження: методи знаходження власних значень і власних векторів матриць.

Задачі дослідження:

  1. Аналіз навчальної та методичної літератури з теми дослідження.

  2. Обгрунтувати методи знаходження власних векторів і власних значень матриць.

  3. Навести приклади знаходження власних векторів і власних значень матриць.


Розділ І. Основні відомості з лінійної алгебри


    1. Види матриць. Дії над матрицями. Визначник


Матрицею називається прямокутна таблиця з чисел, яка складається з деякої кількості m рядків та деякої кількості n стовпців.

Числа m і n називаються порядками матриці. У випадку, якщо m = n, матриця називається квадратною, а число m = n — її порядком. [2, стор. 10]

Щоб записати матрицю, виписують належним чином позначення її елементів та отриману таблицю беруть в дужки або обмежують подвійними лініями.

Таким чином, загальний вигляд матриці розмірності (m, n) буде таким


, , ,


де aij — позначення елементів з множини C. Часто замість такого докладного запису вживають скорочений: || aij || або || aij ||m,n.

Якщо кількість рядків матриці дорівнює кількості її стовпців, то матриця називається квадратною, а кількість її рядків, що дорівнює кількості стовпців, називається порядком квадратної матриці.

Матрицю, що має тільки один рядок, називають просто рядком матриці, а кількість його елементів — довжиною рядка. В подальшому матриці будуть позначатися великими літерами латинського алфавіту.

Дві матриці називаються рівними, якщо кількість рядків і стовпців у них відповідно рівні та якщо рівні числа, що стоять на відповідних місцях цих матриць. Таким чином, одна рівність між (m, n)-матрицями рівносильна системі mn рівностей між їх елементами.

Основними матричними операціями є множення числа на матрицю або матриці на число, додавання та перемноження двох матриць. За означенням, для того щоб помножити число α на матрицю А або матрицю А на число α, необхідно помножити α на всі елементи матриці А. Наприклад,



Матриця всі елементи якої дорівнюють нулю, називається нульовою матрицею і позначається О. Якщо бажають вказати явно кількість рядків і стовпців нульової матриці, то пишуть Оmn.

Блочні матриці. Припустимо, що деяка матриця за допомогою горизонтальних і вертикальних прямих розбита на окремі прямокутні клітини, кожна з яких являє собою матрицю менших розмірів і називається блоком вихідної матриці. В такому разі виникає можливість розгляду вихідної матриці А як деякої нової (так званої блочної) матриці , елементами слугують вказані блоки.

Наприклад, матрицю



можна розглядати як блочну матрицю , елементами якої слугують наступні блоки:


Цікавим є той факт, що основні операції з блочними матрицями здійснюються за тими ж правилами, по яким вони здійснюються зі звичайними числовими матрицями, тільки в ролі елементів виступають блоки. [2, стор. 15]

Для довільної матриці А та довільних α, β мають місце такі співввідношення:



Сумою двох матриць А і В, що мають відповідно рівну кількість рядків і стовпців, називається матриця, що має ту ж кількість рядків і стовпців і елементи, які дорівнюють сумам відповідних елементів матриць А, В. Наприклад,



З цього визначення витікають співвідношення:



Вводячи позначення , будемо також мати


[4]


Добутком матриці , що має відповідно розмірність m х n, на матрицю , що має відповідно розмірність n х p, називається матриця , що має відповідно розмірність m х p,та елементи , які визначаються за формулою


(1)


Для позначення добутку матриці А на матрицю В використовують запис . Операція складання добутку матриці А на матрицю В називається перемноженням цих матриць.

Зі сформульованого вище слідує, що матрицю А можна помножити не на будь-яку матрицю В: необхідно, щоб кількість стовпців матриці А дорівнювало кількості рядків матриці В.

Зокрема, два добутки можна визначити лише в тому випадку, коли кількість стовпців А співпадає з числом рядків В, а кількість рядків А співпадає з кількістю стовпців В. При цьому обидві матриці будуть квадратними, але порядки їх будуть різними. Для того щоб обидва добутки не тільки були визначеними, але й мали однаковий порядок, необхідно і достатньо, щоб обидві матриці А і В були квадратними матрицями одного й того ж порядку.

Формула (1) являє собою правило складання елементів матриці С, що являє собою добуток матриці А на матрицю В. Це правило можна сформулювати і словесно: елемент , що стоїть на перетині і-го рядка та j-го стовпця матриці , дорівнює сумі попарних добутків відповідних елементів і-го рядка матриці А та j-го стовпця матриці В.

В якості приклада застосування вказаного правила приведемо формулу перемноження квадратних матриць другого порядку



З формули (1) витікають наступні властивості добутку матриці А на матрицю В:


  1. або


Серед квадратних матриць виділимо клас так званих діагональних матриць, у кожної з яких елементи, що розташовані не на головній діагоналі, дорівнюють нулю. Кожна діагональна матриця має вид


,


де — які завгодно числа. Легко бачити, що якщо всі ці числа рівні між собою, тобто то для будь-якої квадратної матриці А порядку n справедлива рівність .

Серед усіх діагональних матриць, у яких діагональні елементи співпадають особливу роль відіграють дві матриці. Перша з них отримується при d = 1, називається одиничною матрицею n-го порядку і позначається Е. Друга матриця отримується при d = 0, називається нульовою матрицею n-го порядку і позначається О.

Таким чином,



[2, стор. 14]

З правил дій над матрицями безпосередньо витікає, що сумма і добуток діагональних матриць буде знову діагональною матрицею:



Розглянемо тепер довільну квадратну матрицю Х порядка п з елементами з кільця К. За означенням вважаємо



Оскільки при множені декількох матриць дужки можна розташовувати довільно, то для будь-яких цілих невід’ємних p, q та довільної матриці Х над асоціативним кільцем К маємо


, (2)

.


Матриці А і В називаються переставними (комутативними), якщо



Зі співвідношення (2) отримаємо


,


і, значить, всі натуральні степені однієї і тієї ж матриці переставні між собою.

Справедливе й більш загальне твердження: якщо матриці А і В переставні, то будь-які їх натуральні степені також переставні й для будь-якого натурального p маємо



Транспонування матриць.

Розглянемо довільну матрицю



Матриця



що отрималася з А заміною рядків стовпцями, називається транспонованою по відношенню до А.

Для довільних матриць А, В мають місце наступні правила транспонування:


,


де, α, β — довільні числа.

Якщо А — довільна квадратна матриця і



то А називається симетричною; якщо ж



то — кососиметричною. [4]

Поняття визначника. Розглянемо довільну квадратну матрицю будь-якого порядку n:



Визначник (або детермінант) визначається для довільної квадратної матриці А, і являє собою поліном від всіх її елементів. Позначається — або det(A), або — в розгорнутому вигляді



(матриця обмежується вертикальними лініями). Маючи на увазі порядок матриці А, про її визначник кажуть як про визначник порядку п.


Для п=1:



для п=2:


для п=3:



для п = 4 формула стає громіздкою.

Введемо тепер визначник довільного порядку п.

Впорядкована пара різних натуральних чисел (а,b) утворює інверсію (або порушення порядку), якщо . Будемо позначати число інверсій в парі (а,b) через . Таким чином



Число інверсій в послідовності різних натуральних чисел визначається наступним чином:



Визначником (або детермінантом) матриці



Називається



де сумма поширюється на всілякі перестановки елементів , Число п називається порядком визначника. В загальному випадку сума, що визначає детермінант порядку п, містить п! доданків, кожен з яких являє собою добуток п елементів визначника, взятих по одному з кожного рядка й з кожного стовпця (тобто після того, як в добуток вставляється елемент більше в цей добуток не береться жодного елемента з j-го рядка та k-го стовпця). Знак в добутку визначається по вказаному вище правилу.


    1. Власні значення та власні вектори матриці


Якщо А — квадратна матриця п-го порядку і при , то число l називається власним значенням матриці, а ненульовий вектор х — відповідним йому власним вектором. Перепишемо задачу в такому вигляді


(1)


Для існування нетривіального розв’язку задачі (1) має виконуватися умова


(2)


Цей визначник являє собою многочлен п-ї степені від l; його називають характеристичним многочленом. Значить, існує п власних значень — коренів цього многочлена, серед яких можуть бути однакові (кратні).

Якщо знайдено деяке власне значення, то, при підстановці його в однорідну систему (1), можна визначити відповідний власний вектор. Будемо нормувати власні вектори1. Тоді кожному простому (не кратному) власному значенню відповідає один (з точністю до напрямку) власний вектор, а сукупність всіх власних векторів, що відповідають сукупності простих власних значень, лінійно-незалежна. Таким чином, якщо всі власні значення матриці прості, то вона має п лінійно-незалежних власних векторів, які утворюють базис простору.

Кратному власному значенню кратності р може відповідати від 1 до р лінійно-незалежних власних векторів. Наприклад, розглянемо такі матриці четвертого порядку:


(3)


В кожної з них характеристичне рівняння приймає вигляд , а отже, власне значення і має кратність р=4. Проте в першої матриці є чотири лінійно-незалежних власних вектора


(4)


У другої матриці є тільки один власний вектор е1. Другу матрицю називають простою жордановою (або класичною) підматрицею. Третя матриця має так звану канонічну жорданову форму (по діагоналі стоять або числа, або жорданові підматриці, а інші елементи дорівнюють нулеві).

Таким чином, якщо серед власних значень матриці є кратні, то її власні вектори не завжди утворюють базис. Однак і в цьому випадку власні вектори, що відповідають різним власним значенням, являються лінійно-незалежними.[3, стор 156]

При розв’язуванні теоретичних і практичних задач часто виникає потреба визначити власні значення даної матриці А, тобто обчислити корені її вікового (характеристичного) рівняння


det(A - lE) = 0 (2)


а також знайти відповідні власні векторі матриці А. Друга задача є простішою, оскільки якщо корені характеристичного рівняння відомі, то знаходження власних векторів зводиться до відшукання ненульових розв’язків деяких однорідних лінійних систем. Тому ми в першу чергу будемо займатися першою задачею — відшуканням коренів характеристичного рівняння (2).

Тут в основному застосовуються два прийоми: 1) розгортання вікового визначника в поліном n-го степеня


D(l) = det(A - lE)

з подальшим розв’язком рівняння D(l) = 0 одним з відомих наближених, взагалі кажучи, способів (наприклад, методом Лобачевського-Греффе) наближене визначення коренів характеристичного рівняння (найчастіше найбільших по модулю) методом ітерації, без попереднього розгортання вікового визначника.

Розгортання вікового визначника.

Як відомо, віковим визначником матриці А = [aij] називається визначник вигляду


D(l) = det(A - lE) = (1)


Прирівнюючи цей визначник до нуля, одержуємо характеристичне рівняння


D(l) = 0


Якщо потрібно знайти все коріння характеристичного рівняння, то доцільно заздалегідь обчислити визначник (1).

Розгортаючи визначник (1), одержуємо поліном n-го степеня


(2)

Де


є сума усіх діагональних мінорів першого порядку матриці А.



є сума всього діагонального мінору другого порядку матриці А;



— сума всіх діагональних мінорів третього порядку матриці А і т.д. Нарешті


sn = det A.


Легко переконатися, що число діагональних мінорів k-го порядку матриці А дорівнює


(k = 1, 2, …, n ).


Звідси одержуємо, що безпосереднє обчислення коефіцієнтів характеристичного полінома (2) еквівалентно обчисленню



визначників різних порядків. Остання задача, взагалі кажучи, технічно важко здійснена для скільки-небудь великих значень n. Тому створені спеціальні методи розгортання вікових визначників (методи А. Н. Крилова, А. М. Данілевського, Леверье, метод невизначених коефіцієнтів, метод інтерполяції та ін.).


Розділ ІІ. Знаходження власних векторів і власних значень матриць


    1. Метод А. М. Данілевського


Суть методу А. М. Данілевського [1] полягає в приведенні вікового визначника до так званого нормального виду Фробеніуса


. (1)


Якщо нам вдалося записати вікового визначника у формі (1), то, розкладаючи його по елементах першого рядка, матимемо:



Або


. (2)


Таким чином, розгортання вікового визначника, записаного в нормальній формі (1), не представляє труднощів. Позначимо через


дану матрицю, а через



— подібну їй матрицю Фробеніуса, тобто


,


де S - особлива матриця.

Оскільки подібні матриці володіють однаковими характеристичними поліномами, то маємо:


det(A-lE)= det(P-lE). (3)


Тому для обґрунтування методу досить показати, яким чином, виходячи з матриці А, будується матриця Р. Згідно методу А. М. Данілевського, перехід від матриці А до подібної їй матриці Р здійснюється за допомогою т - 1 перетворення подібності, що послідовно перетворюють рядки матриці А, починаючи з останньої, у відповідні рядки матриці Р.

Покажемо початок процесу. Нам необхідно рядок



перевести в рядок 0 0 ... 1 0. Припускаючи, що , розділимо всі елементи (n-1) - го стовпця матриці А на . Тоді її n-й рядок прийме вигляд


.


Потім віднімемо (n-1) - й стовпець перетвореної матриці, помножений відповідно на числа , зі всієї решти її стовпців.

В результаті одержимо матрицю, останній рядок якої має бажаний вигляд 0 0 ... 1 0. Вказані операції є елементарними перетвореннями, що здійснюються над стовпцями матриці А. Виконавши ці ж перетворення над одиничною матрицею, одержимо матрицю



Де


при і ≠ n - 1(4)


І


.(4')


Звідси робимо висновок, що проведені операції рівносильні множенню справа матриці на матрицю А, тобто після вказаних перетворень одержимо матрицю


. (5)


Використовуючи правило множення матриць, знаходимо, що елементи матриці В обчислюються за наступними формулами:


(6)

(6')


Проте побудована матриця не буде подібна матриці А. Для того щоб мати перетворення подібності, потрібно обернену матрицю зліва помножити на матрицю В:


.


Безпосередньою перевіркою легко переконатися, що обернена матриця має вигляд


(7)


Нехай



Отже


(8)


Оскільки, очевидно, множення зліва матриці на матрицю В не змінює перетвореного рядка останньої, то матриця C має вигляд


(9)


Перемножуючи матриці (7) і B (5), матимемо:


(10)


І


(10')


Таким чином, множення на матрицю В змінює лише (n - 1) -й рядок матриці В. Елементи цього рядка знаходяться за формулами (10) і (10'). Одержана матриця C подібна матриці А і має один зведений рядок. Цим закінчується перший етап процесу.

Далі, якщо , то над матрицею C можна повторити аналогічні операції, узявши за основу (n - 2) -й її рядок. В результаті одержимо матрицю



з двома зведеними рядками. Над останньою матрицею проробляємо ті ж операції. Продовжуючи цей процес, ми, нарешті, одержимо матрицю Фробеніуса



якщо, звичайно, всі n - 1 проміжних перетворень можливі. Весь процес може бути оформлений в зручну обчислювальну схему, складання якої покажемо на наступному прикладі.

Приклад. Привести до вигляду Фробеніуса матрицю


.


Розв’язання.


Обчислення розташовуємо в таблицю 1.

Номер

рядка